These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 18246719)

  • 21. Bacterial community evaluation during establishment of tall fescue (Festuca arundinacea) in soil contaminated with pyrene.
    Chen YC; Banks MK
    Int J Phytoremediation; 2004; 6(3):227-38. PubMed ID: 15554475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyphenol oxidase activity in subcellular fractions of tall fescue contaminated by polycyclic aromatic hydrocarbons.
    Ling W; Lu X; Gao Y; Liu J; Sun Y
    J Environ Qual; 2012; 41(3):807-13. PubMed ID: 22565262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Responses of tall fescue (Festuca arundinacea) to growth in naphthalene-contaminated sand: xenobiotic stress versus water stress.
    Balasubramaniyam A; Chapman MM; Harvey PJ
    Environ Sci Pollut Res Int; 2015 May; 22(10):7495-507. PubMed ID: 25874421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Strains of Pseudomonas fluorescens 3 and Arthrobacter sp. 2--degradation of polycyclic aromatic hydrocarbons].
    Soroka IaM; Samoĭlenko LS; Gvozdiak PI
    Mikrobiol Z; 2001; 63(3):65-70. PubMed ID: 11785266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils.
    Huang XD; El-Alawi Y; Penrose DM; Glick BR; Greenberg BM
    Environ Pollut; 2004 Aug; 130(3):465-76. PubMed ID: 15182977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a.
    Bugg T; Foght JM; Pickard MA; Gray MR
    Appl Environ Microbiol; 2000 Dec; 66(12):5387-92. PubMed ID: 11097918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and characterization of the emhABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a.
    Hearn EM; Dennis JJ; Gray MR; Foght JM
    J Bacteriol; 2003 Nov; 185(21):6233-40. PubMed ID: 14563857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular detection of catabolic genes for polycyclic aromatic hydrocarbons in the reed rhizosphere of Sunchon Bay.
    Kahng HY; Oh KH
    J Microbiol; 2005 Dec; 43(6):572-6. PubMed ID: 16410776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth of endophyte (Neotyphodium) during seed germination of tall fescue (Festuca arundinacea).
    Shinozaki S; Tomita-Yokotani K
    Biol Sci Space; 2003 Oct; 17(3):214. PubMed ID: 14676382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of bioaugmentation and supplementary carbon sources on degradation of polycyclic aromatic hydrocarbons by a soil-derived culture.
    van Herwijnen R; Joffe B; Ryngaert A; Hausner M; Springael D; Govers HA; Wuertz S; Parsons JR
    FEMS Microbiol Ecol; 2006 Jan; 55(1):122-35. PubMed ID: 16420621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoremediation of polycyclic aromatic hydrocarbons in manufactured gas plant-impacted soil.
    Spriggs T; Banks MK; Schwab P
    J Environ Qual; 2005; 34(5):1755-62. PubMed ID: 16151227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant--rhizosphere-microflora association during phytoremediation of PAH-contaminated soil.
    Muratova A; Hūbner T; Tischer S; Turkovskaya O; Möder M; Kuschk P
    Int J Phytoremediation; 2003; 5(2):137-51. PubMed ID: 12929496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil.
    Olson PE; Castro A; Joern M; DuTeau NM; Pilon-Smits EA; Reardon KF
    J Environ Qual; 2007; 36(5):1461-9. PubMed ID: 17766825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation.
    Cho O; Choi KY; Zylstra GJ; Kim YS; Kim SK; Lee JH; Sohn HY; Kwon GS; Kim YM; Kim E
    Biochem Biophys Res Commun; 2005 Feb; 327(3):656-62. PubMed ID: 15649397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Screening of human enteric microorganisms for potential biotransformation of polycyclic aromatic hydrocarbons.
    Hurdzan CM; Basta NT; Hatcher PG; Tuovinen OH
    Bull Environ Contam Toxicol; 2007 Nov; 79(5):533-6. PubMed ID: 17680170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple and effective plating method to screen polycyclic aromatic hydrocarbon-degrading bacteria under various redox conditions.
    Um Y; Chang MW; Holoman TP
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):291-7. PubMed ID: 20645084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lability of polycyclic aromatic hydrocarbons in the rhizosphere.
    Cofield N; Banks MK; Schwab AP
    Chemosphere; 2008 Feb; 70(9):1644-52. PubMed ID: 17900653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant Growth Promoting Bacterial Consortium Induces Shifts in Indigenous Soil Bacterial Communities and Controls Listeria monocytogenes in Rhizospheres of Cajanus cajan and Festuca arundinacea.
    Sharma R; Gal L; Garmyn D; Bru D; Sharma S; Piveteau P
    Microb Ecol; 2022 Jul; 84(1):106-121. PubMed ID: 34405251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transformation of copper fractions in rhizosphere soil of two dominant plants in a deserted land of copper tailings.
    Wang Y; Zhang L; Huang Y; Yao J; Yang H
    Bull Environ Contam Toxicol; 2009 Apr; 82(4):468-72. PubMed ID: 19169613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of natural microbial remediation of petroleum-polluted soil using graminaceous plants.
    Zhang ZZ; Su SM; Luo YJ; Lu M
    Water Sci Technol; 2009; 59(5):1025-35. PubMed ID: 19273903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.