These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 18246723)
41. Enhanced phytoremediation of PAHs and cadmium contaminated soils by a Mycobacterium. Li N; Liu R; Chen J; Wang J; Hou L; Zhou Y Sci Total Environ; 2021 Feb; 754():141198. PubMed ID: 33254925 [TBL] [Abstract][Full Text] [Related]
42. Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site: a field study. Ma TT; Teng Y; Luo YM; Christie P Int J Phytoremediation; 2013; 15(2):154-67. PubMed ID: 23487993 [TBL] [Abstract][Full Text] [Related]
43. Effects of corn straw on dissipation of polycyclic aromatic hydrocarbons and potential application of backpropagation artificial neural network prediction model for PAHs bioremediation. Bao H; Wang J; Li J; Zhang H; Wu F Ecotoxicol Environ Saf; 2019 Dec; 186():109745. PubMed ID: 31606644 [TBL] [Abstract][Full Text] [Related]
44. Bioremediation of PAH-contaminated shooting range soil using integrated approaches. Wolf DC; Cryder Z; Khoury R; Carlan C; Gan J Sci Total Environ; 2020 Jul; 726():138440. PubMed ID: 32315846 [TBL] [Abstract][Full Text] [Related]
45. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil. Sun TR; Cang L; Wang QY; Zhou DM; Cheng JM; Xu H J Hazard Mater; 2010 Apr; 176(1-3):919-25. PubMed ID: 20005625 [TBL] [Abstract][Full Text] [Related]
46. Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.). Chen YC; Banks MK; Schwab AP Environ Sci Technol; 2003 Dec; 37(24):5778-82. PubMed ID: 14717195 [TBL] [Abstract][Full Text] [Related]
47. Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Watts AW; Ballestero TP; Gardner KH Chemosphere; 2006 Mar; 62(8):1253-60. PubMed ID: 16213549 [TBL] [Abstract][Full Text] [Related]
48. Uptake of polycyclic aromatic hydrocarbons by Trifolium pretense L. from water in the presence of a nonionic surfactant. Gao Y; Shen Q; Ling W; Ren L Chemosphere; 2008 Jun; 72(4):636-43. PubMed ID: 18387650 [TBL] [Abstract][Full Text] [Related]
49. Polycyclic aromatic hydrocarbons bioavailability in industrial and agricultural soils: Linking SPME and Tenax extraction with bioassays. Guo M; Gong Z; Li X; Allinson G; Rookes J; Cahill D Ecotoxicol Environ Saf; 2017 Jun; 140():191-197. PubMed ID: 28260684 [TBL] [Abstract][Full Text] [Related]
50. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Hou J; Liu W; Wang B; Wang Q; Luo Y; Franks AE Chemosphere; 2015 Nov; 138():592-8. PubMed ID: 26210024 [TBL] [Abstract][Full Text] [Related]
51. Phytoremediation and removal mechanisms in Bouteloua curtipendula growing in sterile hydrocarbon spiked cultures. Reynoso-Cuevas L; Gallegos-Martínez ME; Cruz-Sosa F; Gutiérrez-Rojas M Int J Phytoremediation; 2011 Jul; 13(6):613-25. PubMed ID: 21972507 [TBL] [Abstract][Full Text] [Related]
52. Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species. Liu R; Dai Y; Sun L PLoS One; 2015; 10(3):e0120369. PubMed ID: 25822167 [TBL] [Abstract][Full Text] [Related]
53. Phytoextraction of weathered p,p'-DDE by zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under different cultivation conditions. Wang X; White JC; Gent MP; Iannucci-Berger W; Eitzer BD; Mattina MI Int J Phytoremediation; 2004; 6(4):363-85. PubMed ID: 15696707 [TBL] [Abstract][Full Text] [Related]
54. Plant--rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Muratova A; Hūbner T; Tischer S; Turkovskaya O; Möder M; Kuschk P Int J Phytoremediation; 2003; 5(2):137-51. PubMed ID: 12929496 [TBL] [Abstract][Full Text] [Related]
55. Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. Teng Y; Shen Y; Luo Y; Sun X; Sun M; Fu D; Li Z; Christie P J Hazard Mater; 2011 Feb; 186(2-3):1271-6. PubMed ID: 21177027 [TBL] [Abstract][Full Text] [Related]
56. Study on the efficiency of phytoremediation of soils heavily polluted with PAHs in petroleum-contaminated sites by microorganism. Hou L; Liu R; Li N; Dai Y; Yan J Environ Sci Pollut Res Int; 2019 Oct; 26(30):31401-31413. PubMed ID: 31485937 [TBL] [Abstract][Full Text] [Related]
57. Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Liste HH; Prutz I Chemosphere; 2006 Mar; 62(9):1411-20. PubMed ID: 15996713 [TBL] [Abstract][Full Text] [Related]
58. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. Gao Y; Li Q; Ling W; Zhu X J Hazard Mater; 2011 Jan; 185(2-3):703-9. PubMed ID: 20956057 [TBL] [Abstract][Full Text] [Related]
59. Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid. Aderholt M; Vogelien DL; Koether M; Greipsson S Chemosphere; 2017 May; 175():85-96. PubMed ID: 28211339 [TBL] [Abstract][Full Text] [Related]
60. Effect of rhamnolipids on the uptake of PAHs by ryegrass. Zhu L; Zhang M Environ Pollut; 2008 Nov; 156(1):46-52. PubMed ID: 18281132 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]