These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 18247026)
1. Fluorescent in situ hybridization and flow cytometry as tools to evaluate the treatments for the control of slime-forming enterobacteria in paper mills. Torres CE; Gibello A; Nande M; Martin M; Blanco A Appl Microbiol Biotechnol; 2008 Apr; 78(5):889-97. PubMed ID: 18247026 [TBL] [Abstract][Full Text] [Related]
2. Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry. Lenaerts J; Lappin-Scott HM; Porter J Appl Environ Microbiol; 2007 Mar; 73(6):2020-3. PubMed ID: 17277208 [TBL] [Abstract][Full Text] [Related]
3. Oligonucleotide probe for detecting Enterobacteriaceae by in situ hybridization. Ootsubo M; Shimizu T; Tanaka R; Sawabe T; Tajima K; Yoshimizu M; Ezura Y; Ezaki T; Oyaizu H J Appl Microbiol; 2002; 93(1):60-8. PubMed ID: 12067375 [TBL] [Abstract][Full Text] [Related]
4. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe. Braun B; Richert I; Szewzyk U J Microbiol Methods; 2009 Oct; 79(1):37-43. PubMed ID: 19638289 [TBL] [Abstract][Full Text] [Related]
5. A survey of the relative abundance of specific groups of cellulose degrading bacteria in anaerobic environments using fluorescence in situ hybridization. O'Sullivan C; Burrell PC; Clarke WP; Blackall LL J Appl Microbiol; 2007 Oct; 103(4):1332-43. PubMed ID: 17897237 [TBL] [Abstract][Full Text] [Related]
6. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes. Huang CL; Chen CC; Lin CY; Liu WT Water Sci Technol; 2009; 59(10):1901-9. PubMed ID: 19474483 [TBL] [Abstract][Full Text] [Related]
7. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Amann R; Fuchs BM Nat Rev Microbiol; 2008 May; 6(5):339-48. PubMed ID: 18414500 [TBL] [Abstract][Full Text] [Related]
8. Rapid identification of Enterobacteriaceae using a novel 23S rRNA-targeted oligonucleotide probe. Bohnert J; Hübner B; Botzenhart K Int J Hyg Environ Health; 2000 Mar; 203(1):77-82. PubMed ID: 10956593 [TBL] [Abstract][Full Text] [Related]
9. Differentiation of two very similar glaucomid ciliate morphospecies (Ciliophora, Tetrahymenida) by fluorescence in situ hybridization with 18S rRNA targeted oligonucleotide probes. Fried J; Foissner W J Eukaryot Microbiol; 2007; 54(4):381-7. PubMed ID: 17669165 [TBL] [Abstract][Full Text] [Related]
10. Visualization of mcr mRNA in a methanogen by fluorescence in situ hybridization with an oligonucleotide probe and two-pass tyramide signal amplification (two-pass TSA-FISH). Kubota K; Ohashi A; Imachi H; Harada H J Microbiol Methods; 2006 Sep; 66(3):521-8. PubMed ID: 16545875 [TBL] [Abstract][Full Text] [Related]
12. Potential microbiological hazards in the production of refined paper products for food applications. Raaska L; Sillanpää J; Sjöberg AM; Suihko ML J Ind Microbiol Biotechnol; 2002 Apr; 28(4):225-31. PubMed ID: 11986924 [TBL] [Abstract][Full Text] [Related]
13. LNA flow-FISH: a flow cytometry-fluorescence in situ hybridization method to detect messenger RNA using locked nucleic acid probes. Robertson KL; Thach DC Anal Biochem; 2009 Jul; 390(2):109-14. PubMed ID: 19393610 [TBL] [Abstract][Full Text] [Related]
14. Visualization of sporopollenin-containing pathogenic green micro-alga Prototheca wickerhamii by fluorescent in situ hybridization (FISH). Ueno R Can J Microbiol; 2009 Apr; 55(4):465-72. PubMed ID: 19396247 [TBL] [Abstract][Full Text] [Related]
15. Impact of slime dispersants and anti-adhesives on in vitro biofilm formation of Staphylococcus epidermidis on intraocular lenses and on antibiotic activities. Kadry AA; Fouda SI; Shibl AM; Abu El-Asrar AA J Antimicrob Chemother; 2009 Mar; 63(3):480-4. PubMed ID: 19147522 [TBL] [Abstract][Full Text] [Related]
16. ERIC-PCR-based strain-specific detection of phenol-degrading bacteria in activated sludge of wastewater treatment systems. Wang L; Jin Y; Zhao L; Pang X; Zhang X Lett Appl Microbiol; 2009 Oct; 49(4):522-8. PubMed ID: 19708883 [TBL] [Abstract][Full Text] [Related]
17. Simple detection of small amounts of Pseudomonas cells in milk by using a microfluidic device. Yamaguchi N; Ohba H; Nasu M Lett Appl Microbiol; 2006 Dec; 43(6):631-6. PubMed ID: 17083709 [TBL] [Abstract][Full Text] [Related]
18. Application of FISH technology for microbiological analysis: current state and prospects. Bottari B; Ercolini D; Gatti M; Neviani E Appl Microbiol Biotechnol; 2006 Dec; 73(3):485-94. PubMed ID: 17051413 [TBL] [Abstract][Full Text] [Related]
19. Polysaccharide-producing bacteria isolated from paper machine slime deposits. Rättö M; Suihko ML; Siika-aho M J Ind Microbiol Biotechnol; 2005 Mar; 32(3):109-14. PubMed ID: 15750806 [TBL] [Abstract][Full Text] [Related]
20. High-temperature fluorescent in situ hybridization for detecting Escherichia coli in seawater samples, using rRNA-targeted oligonucleotide probes and flow cytometry. Tang YZ; Gin KY; Lim TH Appl Environ Microbiol; 2005 Dec; 71(12):8157-64. PubMed ID: 16332798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]