BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18247247)

  • 1. Biomechanical and energetic effects of a stance-control orthotic knee joint.
    Zissimopoulos A; Fatone S; Gard SA
    J Rehabil Res Dev; 2007; 44(4):503-13. PubMed ID: 18247247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users.
    Davis PC; Bach TM; Pereira DM
    Prosthet Orthot Int; 2010 Jun; 34(2):206-15. PubMed ID: 20470059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The gait and energy efficiency of stance control knee-ankle-foot orthoses: A literature review.
    Rafiaei M; Bahramizadeh M; Arazpour M; Samadian M; Hutchins SW; Farahmand F; Mardani MA
    Prosthet Orthot Int; 2016 Apr; 40(2):202-14. PubMed ID: 26055252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a variable resistance orthotic knee joint.
    Herbert-Copley A; Lemaire ED; Baddour N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2210-2213. PubMed ID: 28268770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of footwear adapted with a multi-curved rocker sole in conjunction with knee-ankle-foot orthoses on walking in poliomyelitis subjects: a pilot study.
    Mojaver A; Arazpour M; Aminian G; Ahmadi Bani M; Bahramizadeh M; Sharifi G; Sherafatvaziri A
    Disabil Rehabil Assist Technol; 2017 Oct; 12(7):747-751. PubMed ID: 27982715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State of the art review of knee-ankle-foot orthoses.
    Tian F; Hefzy MS; Elahinia M
    Ann Biomed Eng; 2015 Feb; 43(2):427-41. PubMed ID: 25631201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait of stance control orthosis users: the dynamic knee brace system.
    Irby SE; Bernhardt KA; Kaufman KR
    Prosthet Orthot Int; 2005 Dec; 29(3):269-82. PubMed ID: 16466156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering design review of stance-control knee-ankle-foot orthoses.
    Yakimovich T; Lemaire ED; Kofman J
    J Rehabil Res Dev; 2009; 46(2):257-67. PubMed ID: 19533539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.
    Arazpour M; Moradi A; Samadian M; Bahramizadeh M; Joghtaei M; Ahmadi Bani M; Hutchins SW; Mardani MA
    Prosthet Orthot Int; 2016 Jun; 40(3):377-83. PubMed ID: 26184037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of knee joint moments on the function of knee-ankle-foot orthoses during walking.
    Andrysek J; Klejman S; Kooy J
    J Appl Biomech; 2013 Aug; 29(4):474-80. PubMed ID: 23182738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, construction, and evaluation of "sensor lock": an electromechanical stance control knee joint.
    Arazpour M; Ahmadi Bani M; Baniasad M; Samadian M; Golchin N
    Disabil Rehabil Assist Technol; 2018 Apr; 13(3):226-233. PubMed ID: 28350511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait evaluation of an automatic stance-control knee orthosis in a patient with postpoliomyelitis.
    Hebert JS; Liggins AB
    Arch Phys Med Rehabil; 2005 Aug; 86(8):1676-80. PubMed ID: 16084826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait evaluation of a new electromechanical stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5924-7. PubMed ID: 17946729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters.
    Schmalz T; Pröbsting E; Auberger R; Siewert G
    Prosthet Orthot Int; 2016 Apr; 40(2):277-86. PubMed ID: 25249381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of varying the plantarflexion resistance of an ankle-foot orthosis on knee joint kinematics in patients with stroke.
    Kobayashi T; Leung AK; Akazawa Y; Hutchins SW
    Gait Posture; 2013 Mar; 37(3):457-9. PubMed ID: 22921491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait dynamics in the wide spectrum of children with arthrogryposis: a descriptive study.
    Eriksson M; Bartonek Å; Pontén E; Gutierrez-Farewik EM
    BMC Musculoskelet Disord; 2015 Dec; 16():384. PubMed ID: 26821804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical effect of electromechanical knee-ankle-foot-orthosis on knee joint control in patients with poliomyelitis.
    Hwang S; Kang S; Cho K; Kim Y
    Med Biol Eng Comput; 2008 Jun; 46(6):541-9. PubMed ID: 18259793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.