BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18247254)

  • 1. Longitudinal assessment of vibrations during manual and power wheelchair driving over select sidewalk surfaces.
    Wolf E; Cooper RA; Pearlman J; Fitzgerald SG; Kelleher A
    J Rehabil Res Dev; 2007; 44(4):573-80. PubMed ID: 18247254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of selected sidewalk pavement surfaces for vibration experienced by users of manual and powered wheelchairs.
    Cooper RA; Wolf E; Fitzgerald SG; Kellerher A; Ammer W; Boninger ML; Cooper R
    J Spinal Cord Med; 2004; 27(5):468-75. PubMed ID: 15648802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibration exposure of individuals using wheelchairs over sidewalk surfaces.
    Wolf E; Pearlman J; Cooper RA; Fitzgerald SG; Kelleher A; Collins DM; Boninger ML; Cooper R
    Disabil Rehabil; 2005 Dec; 27(23):1443-9. PubMed ID: 16418059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curb descent testing of suspension manual wheelchairs.
    Kwarciak AM; Cooper RA; Fitzgerald SG
    J Rehabil Res Dev; 2008; 45(1):73-84. PubMed ID: 18566927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seat and footrest shocks and vibrations in manual wheelchairs with and without suspension.
    Cooper RA; Wolf E; Fitzgerald SG; Boninger ML; Ulerich R; Ammer WA
    Arch Phys Med Rehabil; 2003 Jan; 84(1):96-102. PubMed ID: 12589628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Rear Wheel Suspension on Tilt-in-Space Wheelchair Shock and Vibration Attenuation.
    Hischke M; Reiser RF
    PM R; 2018 Oct; 10(10):1040-1050. PubMed ID: 29477411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the Functionality and Usability of Two Novel Wheelchair Anti-Rollback Devices for Ramp Ascent in Manual Wheelchair Users With Spinal Cord Injury.
    Deems-Dluhy SL; Jayaraman C; Green S; Albert MV; Jayaraman A
    PM R; 2017 May; 9(5):483-493. PubMed ID: 27664403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Health risks of vibration exposure to wheelchair users in the community.
    Garcia-Mendez Y; Pearlman JL; Boninger ML; Cooper RA
    J Spinal Cord Med; 2013 Jul; 36(4):365-75. PubMed ID: 23820152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Whole-Body Vibration Using Electric Powered Wheelchairs on Surface Transitions.
    Candiotti JL; Neti A; Sivakanthan S; Cooper RA
    Vibration; 2022 Jan; 5(1):98-109. PubMed ID: 35434527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pilot investigation of anterior tilt use among power wheelchair users.
    Rice LA; Yarnot R; Mills S; Sonsoff J
    Disabil Rehabil Assist Technol; 2021 Feb; 16(2):152-159. PubMed ID: 31348680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Wheels, Casters and Forks on Vibration Attenuation and Propulsion Cost of Manual Wheelchairs.
    Misch JP; Liu Y; Sprigle S
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2661-2670. PubMed ID: 36083953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of whole-body vibration during manual wheelchair propulsion: a comparison of seat cushions and back supports for individuals without a disability.
    DiGiovine CP; Cooper RA; Wolf E; Fitzgerald SG; Boninger ML
    Assist Technol; 2003; 15(2):129-44. PubMed ID: 15137730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic analysis of manual wheelchair propulsion during start-up on select indoor and outdoor surfaces.
    Koontz AM; Cooper RA; Boninger ML; Yang Y; Impink BG; van der Woude LH
    J Rehabil Res Dev; 2005; 42(4):447-58. PubMed ID: 16320141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of power wheelchair use in the home and community.
    Sonenblum SE; Sprigle S; Harris FH; Maurer CL
    Arch Phys Med Rehabil; 2008 Mar; 89(3):486-91. PubMed ID: 18295627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-body Vibration Exposure Intervention among Professional Bus and Truck Drivers: A Laboratory Evaluation of Seat-suspension Designs.
    Blood RP; Yost MG; Camp JE; Ching RP
    J Occup Environ Hyg; 2015; 12(6):351-62. PubMed ID: 25625530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proposed pedestrian pathway roughness thresholds to ensure safety and comfort for wheelchair users.
    Duvall J; Sinagra E; Cooper R; Pearlman J
    Assist Technol; 2016; 28(4):209-215. PubMed ID: 27588607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the absorbed power method to evaluate effectiveness of vibration absorption of selected seat cushions during manual wheelchair propulsion.
    Wolf EJ; Cooper MS; DiGiovine CP; Boninger ML; Guo S
    Med Eng Phys; 2004 Nov; 26(9):799-806. PubMed ID: 15564117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of rear suspension and speed on seat forces and head accelerations experienced by manual wheelchair riders with spinal cord injury.
    Requejo PS; Kerdanyan G; Minkel J; Adkins R; Waters R
    J Rehabil Res Dev; 2008; 45(7):985-96. PubMed ID: 19165688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating whole-body vibration limits of manual wheelchair mobility over common surfaces.
    Misch J; Sprigle S
    J Rehabil Assist Technol Eng; 2022; 9():20556683221092322. PubMed ID: 35481986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.