These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18247348)

  • 1. Protein thermal stabilization by charged compatible solutes: Computational studies in rubredoxin from Desulfovibrio gigas.
    Micaelo NM; Victor BL; Soares CM
    Proteins; 2008 Aug; 72(2):580-8. PubMed ID: 18247348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants of protein stabilization by solutes. The important of the hairpin loop in rubredoxins.
    Pais TM; Lamosa P; dos Santos W; Legall J; Turner DL; Santos H
    FEBS J; 2005 Feb; 272(4):999-1011. PubMed ID: 15691333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein stabilization by compatible solutes. Effect of diglycerol phosphate on the dynamics of Desulfovibrio gigas rubredoxin studied by NMR.
    Lamosa P; Turner DL; Ventura R; Maycock C; Santos H
    Eur J Biochem; 2003 Dec; 270(23):4606-14. PubMed ID: 14622247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of rubredoxin from Desulfovibrio gigas to ultra-high 0.68 A resolution.
    Chen CJ; Lin YH; Huang YC; Liu MY
    Biochem Biophys Res Commun; 2006 Oct; 349(1):79-90. PubMed ID: 16930541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus.
    Lamosa P; Burke A; Peist R; Huber R; Liu MY; Silva G; Rodrigues-Pousada C; LeGall J; Maycock C; Santos H
    Appl Environ Microbiol; 2000 May; 66(5):1974-9. PubMed ID: 10788369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR structure of Desulfovibrio gigas rubredoxin: a model for studying protein stabilization by compatible solutes.
    Lamosa P; Brennan L; Vis H; Turner DL; Santos H
    Extremophiles; 2001 Oct; 5(5):303-11. PubMed ID: 11699644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation.
    Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q
    J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic role of electrostatic interactions in the unfolding of hyperthermophilic and mesophilic rubredoxins.
    Cavagnero S; Debe DA; Zhou ZH; Adams MW; Chan SI
    Biochemistry; 1998 Mar; 37(10):3369-76. PubMed ID: 9521657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the mechanism of rubredoxin thermal unfolding in the absence of salt bridges by temperature jump experiments.
    Henriques BJ; Saraiva LM; Gomes CM
    Biochem Biophys Res Commun; 2005 Aug; 333(3):839-44. PubMed ID: 15975557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel parameterization scheme for energy equations and its use to calculate the structure of protein molecules.
    Snow ME
    Proteins; 1993 Feb; 15(2):183-90. PubMed ID: 8441753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rubredoxin as a paramagnetic relaxation-inducing probe.
    Almeida RM; Pauleta SR; Moura I; Moura JJ
    J Inorg Biochem; 2009 Sep; 103(9):1245-53. PubMed ID: 19651443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of the multi-turn segment in the reversible thermal stability of hyperthermophile rubredoxin: NMR thermal chemical exchange analysis of sequence hybrids.
    LeMaster DM; Tang J; Paredes DI; Hernández G
    Biophys Chem; 2005 Jun; 116(1):57-65. PubMed ID: 15911082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersion interactions govern the strong thermal stability of a protein.
    Vondrásek J; Kubar T; Jenney FE; Adams MW; Kozísek M; Cerný J; Sklenár V; Hobza P
    Chemistry; 2007; 13(32):9022-7. PubMed ID: 17696186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gd(III) chelates as NMR probes of protein-protein interactions. Case study: rubredoxin and cytochrome c3.
    Almeida RM; Geraldes CF; Pauleta SR; Moura JJ
    Inorg Chem; 2011 Nov; 50(21):10600-7. PubMed ID: 21957905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of energy stabilization inside the hydrophobic core of rubredoxin.
    Berka K; Hobza P; Vondrásek J
    Chemphyschem; 2009 Feb; 10(3):543-8. PubMed ID: 19170065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the 16 heme cytochrome from Desulfovibrio gigas: a glycosylated protein in a sulphate-reducing bacterium.
    Santos-Silva T; Dias JM; Dolla A; Durand MC; Gonçalves LL; Lampreia J; Moura I; Romão MJ
    J Mol Biol; 2007 Jul; 370(4):659-73. PubMed ID: 17531266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A billion-fold range in acidity for the solvent-exposed amides of Pyrococcus furiosus rubredoxin.
    Anderson JS; Hernández G; Lemaster DM
    Biochemistry; 2008 Jun; 47(23):6178-88. PubMed ID: 18479148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-promoting protein motions in rubredoxin.
    Borreguero JM; He J; Meilleur F; Weiss KL; Brown CM; Myles DA; Herwig KW; Agarwal PK
    J Phys Chem B; 2011 Jul; 115(28):8925-36. PubMed ID: 21608980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural reorganization renders enhanced metalloprotein stability.
    Botelho HM; Gomes CM
    Chem Commun (Camb); 2011 Oct; 47(39):11149-51. PubMed ID: 21894348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of solvation in the energy stabilization inside the hydrophobic core of the protein rubredoxin.
    Riley KE; Merz KM
    J Phys Chem B; 2006 Aug; 110(32):15650-3. PubMed ID: 16898705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.