These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 18247398)
21. Production of extracellular water-insoluble polysaccharide from Pseudomonas sp. Cui JD; Qiu JQ J Agric Food Chem; 2012 May; 60(19):4865-71. PubMed ID: 22533491 [TBL] [Abstract][Full Text] [Related]
22. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749. Jiang L Int J Biol Macromol; 2013 Jan; 52():218-20. PubMed ID: 23085490 [TBL] [Abstract][Full Text] [Related]
23. An increase of curdlan productivity by integration of carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation. Zheng ZY; Jiang Y; Zhan XB; Ma LW; Wu JR; Zhang LM; Lin CC Prikl Biokhim Mikrobiol; 2014; 50(1):44-51. PubMed ID: 25272751 [TBL] [Abstract][Full Text] [Related]
24. [Influence of nitrogen source NH4 Cl concentration on curdlan production in Alcaligenes faecalis]. Sun YS; Wang L; Zhan XB; Zheng ZY; Chen YZ Sheng Wu Gong Cheng Xue Bao; 2005 Mar; 21(2):328-31. PubMed ID: 16013500 [TBL] [Abstract][Full Text] [Related]
25. Scale-up of ethanol production from winter barley by the EDGE (enhanced dry grind enzymatic) process in fermentors up to 300 l. Nghiem NP; Taylor F; Johnston DB; Shetty JK; Hicks KB Appl Biochem Biotechnol; 2011 Oct; 165(3-4):870-82. PubMed ID: 21667197 [TBL] [Abstract][Full Text] [Related]
26. Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC 31749 under simulated dissolved oxygen gradients conditions. Zhang HT; Zhan XB; Zheng ZY; Wu JR; Yu XB; Jiang Y; Lin CC Appl Microbiol Biotechnol; 2011 Jul; 91(1):163-75. PubMed ID: 21472535 [TBL] [Abstract][Full Text] [Related]
27. Survey of US fuel ethanol plants. Saunders JA; Rosentrater KA Bioresour Technol; 2009 Jul; 100(13):3277-84. PubMed ID: 19289276 [TBL] [Abstract][Full Text] [Related]
28. Effective production of biologically active water-soluble β-1,3-glucan by a coupled system of Agrobacterium sp. and Trichoderma harzianum. Liang Y; Zhu L; Gao M; Wu J; Zhan X Prep Biochem Biotechnol; 2018 May; 48(5):446-456. PubMed ID: 29561218 [TBL] [Abstract][Full Text] [Related]
29. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Lu Y; Wang Y; Xu G; Chu J; Zhuang Y; Zhang S Appl Biochem Biotechnol; 2010 Jan; 160(2):360-9. PubMed ID: 18626577 [TBL] [Abstract][Full Text] [Related]
30. Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Jin M; Balan V; Gunawan C; Dale BE Biotechnol Bioeng; 2011 Jun; 108(6):1290-7. PubMed ID: 21280028 [TBL] [Abstract][Full Text] [Related]
31. The future of coproducts from corn processing. Rausch KD; Belyea RL Appl Biochem Biotechnol; 2006 Jan; 128(1):47-86. PubMed ID: 16415480 [TBL] [Abstract][Full Text] [Related]
32. Utilizing protein-lean coproducts from corn containing recombinant pharmaceutical proteins for ethanol production. Paraman I; Moeller L; Scott MP; Wang K; Glatz CE; Johnson LA J Agric Food Chem; 2010 Oct; 58(19):10419-25. PubMed ID: 20809624 [TBL] [Abstract][Full Text] [Related]
33. Changes and evolution of corn coproducts for beef cattle. Berger L; Singh V J Anim Sci; 2010 Apr; 88(13 Suppl):E143-50. PubMed ID: 19933432 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of ethanol production from corncob using Scheffersomyces (Pichia) stipitis CBS 6054 by volumetric scale-up. Lee JW; Zhu JY; Scordia D; Jeffries TW Appl Biochem Biotechnol; 2011 Oct; 165(3-4):814-22. PubMed ID: 21671055 [TBL] [Abstract][Full Text] [Related]
35. Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN. Rafigh SM; Yazdi AV; Vossoughi M; Safekordi AA; Ardjmand M Int J Biol Macromol; 2014 Sep; 70():463-73. PubMed ID: 25062991 [TBL] [Abstract][Full Text] [Related]
37. Optimization and production of curdlan gum using Bacillus cereus PR3 isolated from rhizosphere of leguminous plant. Prakash S; Rajeswari K; Divya P; Ferlin M; Rajeshwari CT; Vanavil B Prep Biochem Biotechnol; 2018 May; 48(5):408-418. PubMed ID: 29561223 [TBL] [Abstract][Full Text] [Related]
38. Production of astaxanthin from corn fiber as a value-added co-product of fuel ethanol fermentation. Nghiem NP; Montanti J; Johnston D Appl Biochem Biotechnol; 2009 May; 154(1-3):48-58. PubMed ID: 18958409 [TBL] [Abstract][Full Text] [Related]
39. Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol. Wang K; Zhang J; Tang L; Zhang H; Zhang G; Yang X; Liu P; Mao Z Bioresour Technol; 2013 Nov; 148():453-60. PubMed ID: 24077154 [TBL] [Abstract][Full Text] [Related]
40. Bioconversion of distillers' grains hydrolysates to advanced biofuels by an Escherichia coli co-culture. Liu F; Wu W; Tran-Gyamfi MB; Jaryenneh JD; Zhuang X; Davis RW Microb Cell Fact; 2017 Nov; 16(1):192. PubMed ID: 29121935 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]