BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 18247433)

  • 1. A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection.
    Yoon H; Kim JH; Lee N; Kim BG; Jang J
    Chembiochem; 2008 Mar; 9(4):634-41. PubMed ID: 18247433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection.
    Yoon H; Ko S; Jang J
    J Phys Chem B; 2008 Aug; 112(32):9992-7. PubMed ID: 18646791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsp90-functionalized polypyrrole nanotube FET sensor for anti-cancer agent detection.
    Kwon OS; Hong TJ; Kim SK; Jeong JH; Hahn JS; Jang J
    Biosens Bioelectron; 2010 Feb; 25(6):1307-12. PubMed ID: 19914055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor.
    Kwon OS; Park SJ; Jang J
    Biomaterials; 2010 Jun; 31(17):4740-7. PubMed ID: 20227108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor.
    Aravinda CL; Cosnier S; Chen W; Myung NV; Mulchandani A
    Biosens Bioelectron; 2009 Jan; 24(5):1451-5. PubMed ID: 18930385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free target DNA recognition using oligonucleotide-functionalized polypyrrole nanotubes.
    Ko S; Jang J
    Ultramicroscopy; 2008 Sep; 108(10):1328-33. PubMed ID: 18554802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled amine functionalization on conducting polypyrrole nanotubes as effective transducers for volatile acetic acid.
    Ko S; Jang J
    Biomacromolecules; 2007 Jan; 8(1):182-7. PubMed ID: 17206805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses.
    Yoon H; Lee SH; Kwon OS; Song HS; Oh EH; Park TH; Jang J
    Angew Chem Int Ed Engl; 2009; 48(15):2755-8. PubMed ID: 19274689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensing behaviors of polypyrrole nanotubes prepared in reverse microemulsions: effects of transducer size and transduction mechanism.
    Yoon H; Chang M; Jang J
    J Phys Chem B; 2006 Jul; 110(29):14074-7. PubMed ID: 16854102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation mechanism of conducting polypyrrole nanotubes in reverse micelle systems.
    Jang J; Yoon H
    Langmuir; 2005 Nov; 21(24):11484-9. PubMed ID: 16285830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polypyrrole nanowire modified with Gly-Gly-His tripeptide for electrochemical detection of copper ion.
    Lin M; Cho M; Choe WS; Yoo JB; Lee Y
    Biosens Bioelectron; 2010 Oct; 26(2):940-5. PubMed ID: 20630738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions.
    Lin M; Hu X; Ma Z; Chen L
    Anal Chim Acta; 2012 Oct; 746():63-9. PubMed ID: 22975181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application.
    Kum MC; Joshi KA; Chen W; Myung NV; Mulchandani A
    Talanta; 2007 Dec; 74(3):370-5. PubMed ID: 18371651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aptamer conjugated Mo(6)S(9-x)I(x) nanowires for direct and highly sensitive electrochemical sensing of thrombin.
    McMullan M; Sun N; Papakonstantinou P; Li M; Zhou W; Mihailovic D
    Biosens Bioelectron; 2011 Jan; 26(5):1853-9. PubMed ID: 20176468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized polypyrrole film: synthesis, characterization, and potential applications in chemical and biological sensors.
    Dong H; Cao X; Li CM
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1599-606. PubMed ID: 20355967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time, step-wise, electrical detection of protein molecules using dielectrophoretically aligned SWNT-film FET aptasensors.
    An T; Kim KS; Hahn SK; Lim G
    Lab Chip; 2010 Aug; 10(16):2052-6. PubMed ID: 20617261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor.
    Ghanbari Kh; Bathaie SZ; Mousavi MF
    Biosens Bioelectron; 2008 Jul; 23(12):1825-31. PubMed ID: 18406598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix.
    Syu MJ; Chang YS
    Biosens Bioelectron; 2009 Apr; 24(8):2671-7. PubMed ID: 19237276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive template synthesis of polypyrrole nanotubes for fabricating metal/conducting polymer nanocomposites.
    Zhang J; Liu X; Zhang L; Cao B; Wu S
    Macromol Rapid Commun; 2013 Mar; 34(6):528-32. PubMed ID: 23341240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamers based electrochemical biosensor for protein detection using carbon nanotubes platforms.
    Kara P; de la Escosura-Muñiz A; Maltez-da Costa M; Guix M; Ozsoz M; Merkoçi A
    Biosens Bioelectron; 2010 Dec; 26(4):1715-8. PubMed ID: 20729068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.