BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 18247503)

  • 1. A new mechanism for methane production from methyl-coenzyme M reductase as derived from density functional calculations.
    Duin EC; McKee ML
    J Phys Chem B; 2008 Feb; 112(8):2466-82. PubMed ID: 18247503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding.
    Grabarse W; Mahlert F; Duin EC; Goubeaud M; Shima S; Thauer RK; Lamzin V; Ermler U
    J Mol Biol; 2001 May; 309(1):315-30. PubMed ID: 11491299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle.
    Harmer J; Finazzo C; Piskorski R; Ebner S; Duin EC; Goenrich M; Thauer RK; Reiher M; Schweiger A; Hinderberger D; Jaun B
    J Am Chem Soc; 2008 Aug; 130(33):10907-20. PubMed ID: 18652465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How is methane formed and oxidized reversibly when catalyzed by Ni-containing methyl-coenzyme M reductase?
    Chen SL; Blomberg MR; Siegbahn PE
    Chemistry; 2012 May; 18(20):6309-15. PubMed ID: 22488738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination and geometry of the nickel atom in active methyl-coenzyme M reductase from Methanothermobacter marburgensis as detected by X-ray absorption spectroscopy.
    Duin EC; Cosper NJ; Mahlert F; Thauer RK; Scott RA
    J Biol Inorg Chem; 2003 Jan; 8(1-2):141-8. PubMed ID: 12459909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of methyl-coenzyme M reductase.
    Ermler U
    Dalton Trans; 2005 Nov; (21):3451-8. PubMed ID: 16234924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coenzyme B induced coordination of coenzyme M via its thiol group to Ni(I) of F430 in active methyl-coenzyme M reductase.
    Finazzo C; Harmer J; Bauer C; Jaun B; Duin EC; Mahlert F; Goenrich M; Thauer RK; Van Doorslaer S; Schweiger A
    J Am Chem Soc; 2003 Apr; 125(17):4988-9. PubMed ID: 12708843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of possible competing mechanisms for Ni-containing methyl-coenzyme M reductase.
    Chen SL; Blomberg MR; Siegbahn PE
    Phys Chem Chem Phys; 2014 Jul; 16(27):14029-35. PubMed ID: 24901069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is there a Ni-methyl intermediate in the mechanism of methyl-coenzyme M reductase?
    Chen SL; Pelmenschikov V; Blomberg MR; Siegbahn PE
    J Am Chem Soc; 2009 Jul; 131(29):9912-3. PubMed ID: 19569621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase.
    Ebner S; Jaun B; Goenrich M; Thauer RK; Harmer J
    J Am Chem Soc; 2010 Jan; 132(2):567-75. PubMed ID: 20014831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct determination of the number of electrons needed to reduce coenzyme F430 pentamethyl ester to the Ni(I) species exhibiting the electron paramagnetic resonance and ultraviolet-visible spectra characteristic for the MCR(red1) state of methyl-coenzyme M reductase.
    Piskorski R; Jaun B
    J Am Chem Soc; 2003 Oct; 125(43):13120-5. PubMed ID: 14570485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue.
    Dey M; Li X; Kunz RC; Ragsdale SW
    Biochemistry; 2010 Dec; 49(51):10902-11. PubMed ID: 21090696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel oxidation states of F(430) cofactor in methyl-coenzyme M reductase.
    Craft JL; Horng YC; Ragsdale SW; Brunold TC
    J Am Chem Soc; 2004 Apr; 126(13):4068-9. PubMed ID: 15053571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Handling methane: a Ni(i) F
    Wu J; Chen SL
    Chem Commun (Camb); 2021 Jan; 57(4):476-479. PubMed ID: 33326521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.
    Ragsdale SW
    Met Ions Life Sci; 2014; 14():125-45. PubMed ID: 25416393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalysis by methyl-coenzyme M reductase: a theoretical study for heterodisulfide product formation.
    Pelmenschikov V; Siegbahn PE
    J Biol Inorg Chem; 2003 Jul; 8(6):653-62. PubMed ID: 12728361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the methyl-coenzyme-m reductase protein matrix on the hole-size and nonplanar deformations of coenzyme F430.
    Mbofana C; Zimmer M
    Inorg Chem; 2006 Mar; 45(6):2598-602. PubMed ID: 16529481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro interconversions among the EPR detectable MCR-red1 and MCR-red2 states.
    Mahlert F; Grabarse W; Kahnt J; Thauer RK; Duin EC
    J Biol Inorg Chem; 2002 Jan; 7(1-2):101-12. PubMed ID: 11862546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin density and coenzyme M coordination geometry of the ox1 form of methyl-coenzyme M reductase: a pulse EPR study.
    Harmer J; Finazzo C; Piskorski R; Bauer C; Jaun B; Duin EC; Goenrich M; Thauer RK; Van Doorslaer S; Schweiger A
    J Am Chem Soc; 2005 Dec; 127(50):17744-55. PubMed ID: 16351103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic and computational studies of reduction of the metal versus the tetrapyrrole ring of coenzyme F430 from methyl-coenzyme M reductase.
    Dey M; Kunz RC; Van Heuvelen KM; Craft JL; Horng YC; Tang Q; Bocian DF; George SJ; Brunold TC; Ragsdale SW
    Biochemistry; 2006 Oct; 45(39):11915-33. PubMed ID: 17002292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.