These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18247505)

  • 1. Alternative global goodness metrics and sensitivity analysis: heuristics to check the robustness of conclusions from studies comparing virtual screening methods.
    Sheridan RP
    J Chem Inf Model; 2008 Feb; 48(2):426-33. PubMed ID: 18247505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
    Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C
    J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-target interaction-based weighting of substructures for virtual screening.
    Crisman TJ; Sisay MT; Bajorath J
    J Chem Inf Model; 2008 Oct; 48(10):1955-64. PubMed ID: 18821751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual screening strategies in drug discovery.
    McInnes C
    Curr Opin Chem Biol; 2007 Oct; 11(5):494-502. PubMed ID: 17936059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple target screening method for robust and accurate in silico ligand screening.
    Fukunishi Y; Mikami Y; Kubota S; Nakamura H
    J Mol Graph Model; 2006 Sep; 25(1):61-70. PubMed ID: 16376595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced virtual screening by combined use of two docking methods: getting the most on a limited budget.
    Maiorov V; Sheridan RP
    J Chem Inf Model; 2005; 45(4):1017-23. PubMed ID: 16045296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LigMatch: a multiple structure-based ligand matching method for 3D virtual screening.
    Kinnings SL; Jackson RM
    J Chem Inf Model; 2009 Sep; 49(9):2056-66. PubMed ID: 19685924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of topological, shape, and docking methods in virtual screening.
    McGaughey GB; Sheridan RP; Bayly CI; Culberson JC; Kreatsoulas C; Lindsley S; Maiorov V; Truchon JF; Cornell WD
    J Chem Inf Model; 2007; 47(4):1504-19. PubMed ID: 17591764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FieldChopper, a new tool for automatic model generation and virtual screening based on molecular fields.
    Kalliokoski T; Ronkko T; Poso A
    J Chem Inf Model; 2008 Jun; 48(6):1131-7. PubMed ID: 18489083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods.
    Venkatraman V; Pérez-Nueno VI; Mavridis L; Ritchie DW
    J Chem Inf Model; 2010 Dec; 50(12):2079-93. PubMed ID: 21090728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical comparison of virtual screening methods against the MUV data set.
    Tiikkainen P; Markt P; Wolber G; Kirchmair J; Distinto S; Poso A; Kallioniemi O
    J Chem Inf Model; 2009 Oct; 49(10):2168-78. PubMed ID: 19799417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using consensus-shape clustering to identify promiscuous ligands and protein targets and to choose the right query for shape-based virtual screening.
    Pérez-Nueno VI; Ritchie DW
    J Chem Inf Model; 2011 Jun; 51(6):1233-48. PubMed ID: 21604699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ranking targets in structure-based virtual screening of three-dimensional protein libraries: methods and problems.
    Kellenberger E; Foata N; Rognan D
    J Chem Inf Model; 2008 May; 48(5):1014-25. PubMed ID: 18412328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-silico drug screening method based on the protein-compound affinity matrix using the factor selection technique.
    Murali S; Hojo S; Tsujishita H; Nakamura H; Fukunishi Y
    Eur J Med Chem; 2007 Jul; 42(7):966-76. PubMed ID: 17307278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple protein structures and multiple ligands: effects on the apparent goodness of virtual screening results.
    Sheridan RP; McGaughey GB; Cornell WD
    J Comput Aided Mol Des; 2008; 22(3-4):257-65. PubMed ID: 18273559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A discussion of measures of enrichment in virtual screening: comparing the information content of descriptors with increasing levels of sophistication.
    Bender A; Glen RC
    J Chem Inf Model; 2005; 45(5):1369-75. PubMed ID: 16180913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based virtual screening with supervised consensus scoring: evaluation of pose prediction and enrichment factors.
    Teramoto R; Fukunishi H
    J Chem Inf Model; 2008 Apr; 48(4):747-54. PubMed ID: 18318474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring.
    Radestock S; Weil T; Renner S
    J Chem Inf Model; 2008 May; 48(5):1104-17. PubMed ID: 18442221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual screening of cathepsin k inhibitors using docking and pharmacophore models.
    Ravikumar M; Pavan S; Bairy S; Pramod AB; Sumakanth M; Kishore M; Sumithra T
    Chem Biol Drug Des; 2008 Jul; 72(1):79-90. PubMed ID: 18498326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.