BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 18247507)

  • 1. Localized Gaussian type orbital-periodic boundary condition-density functional theory study of infinite-length single-walled carbon nanotubes with various tubular diameters.
    Wang HW; Wang BC; Chen WH; Hayashi M
    J Phys Chem A; 2008 Feb; 112(8):1783-90. PubMed ID: 18247507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon chains and the (5,5) single-walled nanotube: structure and energetics versus length.
    Rodriguez KR; Williams SM; Young MA; Teeters-Kennedy S; Heer JM; Coe JV
    J Chem Phys; 2006 Nov; 125(19):194716. PubMed ID: 17129159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition of carbenes to the sidewalls of single-walled carbon nanotubes.
    Bettinger HF
    Chemistry; 2006 May; 12(16):4372-9. PubMed ID: 16555363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles calculation on the conductance of a single 1,4-diisocyanatobenzene molecule with single-walled carbon nanotubes as the electrodes.
    Qian Z; Hou S; Ning J; Li R; Shen Z; Zhao X; Xue Z
    J Chem Phys; 2007 Feb; 126(8):084705. PubMed ID: 17343467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers.
    Zhou Z; Zhao J; Schleyer Pv; Chen Z
    J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT study of zigzag (n, 0) single-walled carbon nanotubes: (13)C NMR chemical shifts.
    Kupka T; Stachów M; Stobiński L; Kaminský J
    J Mol Graph Model; 2016 Jun; 67():14-9. PubMed ID: 27155813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study.
    Rafati AA; Hashemianzadeh SM; Nojini ZB
    J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational studies of carbon nanotube-hydrocarbon bond strengths at nanotube ends: effect of link heteroatom and hydrocarbon structure.
    Gustavsson S; Rosén A; Grennberg H; Bolton K
    Chemistry; 2004 May; 10(9):2223-7. PubMed ID: 15112211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of boron nitride impurities on the elastic properties of carbon nanotubes.
    Yuan J; Liew KM
    Nanotechnology; 2008 Nov; 19(44):445703. PubMed ID: 21832745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio computational investigation of physisorption of molecular hydrogen on achiral single-walled carbon nanotubes.
    Ferre-Vilaplana A
    J Chem Phys; 2005 Jun; 122(21):214724. PubMed ID: 15974779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncovalent interactions between cytosine and SWCNT: curvature dependence of complexes via pi...pi stacking and cooperative CH...pi/NH...pi.
    Wang Y; Bu Y
    J Phys Chem B; 2007 Jun; 111(23):6520-6. PubMed ID: 17508735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jahn-Teller distortion of ionized and excited carbon nanotubes.
    Szakács P; Kocsis D; Surján PR
    J Chem Phys; 2010 Jan; 132(3):034309. PubMed ID: 20095741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical studies on structures, 13C NMR chemical shifts, aromaticity, and chemical reactivity of finite-length open-ended armchair single-walled carbon nanotubes.
    Liu LV; Tian WQ; Chen YK; Zhang YA; Wang YA
    Nanoscale; 2010 Feb; 2(2):254-61. PubMed ID: 20644802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogenated double wall carbon nanotubes.
    Denis PA; Iribarne F; Faccio R
    J Chem Phys; 2009 May; 130(19):194704. PubMed ID: 19466852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive sites for chiral selective growth of single-walled carbon nanotubes: a DFT study of Ni55-C(n) complexes.
    Wang Q; Wang H; Wei L; Yang SW; Chen Y
    J Phys Chem A; 2012 Nov; 116(47):11709-17. PubMed ID: 23110420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role of HNO3 on transparent conducting film with single-walled carbon nanotubes.
    Shin DW; Lee JH; Kim YH; Yu SM; Park SY; Yoo JB
    Nanotechnology; 2009 Nov; 20(47):475703. PubMed ID: 19858556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of possible structures of silicon nanotubes via density-functional tight-binding molecular dynamics simulations and ab initio calculations.
    Zhang RQ; Lee HL; Li WK; Teo BK
    J Phys Chem B; 2005 May; 109(18):8605-12. PubMed ID: 16852018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enthalpy and entropy effects in hydrogen adsorption on carbon nanotubes.
    Efremenko I; Sheintuch M
    Langmuir; 2005 Jul; 21(14):6282-8. PubMed ID: 15982032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality and diameter dependent x-ray absorption of single walled carbon nanotubes.
    Gao B; Wu Z; Agren H; Luo Y
    J Chem Phys; 2009 Jul; 131(3):034704. PubMed ID: 19624218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.
    Kazachkin D; Nishimura Y; Irle S; Morokuma K; Vidic RD; Borguet E
    Langmuir; 2008 Aug; 24(15):7848-56. PubMed ID: 18613702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.