These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 18247622)

  • 1. Probing transient copper chaperone-Wilson disease protein interactions at the single-molecule level with nanovesicle trapping.
    Benítez JJ; Keller AM; Ochieng P; Yatsunyk LA; Huffman DL; Rosenzweig AC; Chen P
    J Am Chem Soc; 2008 Feb; 130(8):2446-7. PubMed ID: 18247622
    [No Abstract]   [Full Text] [Related]  

  • 2. Binding of copper(I) by the Wilson disease protein and its copper chaperone.
    Wernimont AK; Yatsunyk LA; Rosenzweig AC
    J Biol Chem; 2004 Mar; 279(13):12269-76. PubMed ID: 14709553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An NMR study of the interaction of the N-terminal cytoplasmic tail of the Wilson disease protein with copper(I)-HAH1.
    Banci L; Bertini I; Cantini F; Massagni C; Migliardi M; Rosato A
    J Biol Chem; 2009 Apr; 284(14):9354-60. PubMed ID: 19181666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cu(I) binding and transfer by the N terminus of the Wilson disease protein.
    Yatsunyk LA; Rosenzweig AC
    J Biol Chem; 2007 Mar; 282(12):8622-31. PubMed ID: 17229731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein.
    Banci L; Bertini I; Ciofi-Baffoni S; Chasapis CT; Hadjiliadis N; Rosato A
    FEBS J; 2005 Feb; 272(3):865-71. PubMed ID: 15670166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysine-60 in copper chaperone Atox1 plays an essential role in adduct formation with a target Wilson disease domain.
    Hussain F; Rodriguez-Granillo A; Wittung-Stafshede P
    J Am Chem Soc; 2009 Nov; 131(45):16371-3. PubMed ID: 19863064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases.
    Jordan IK; Natale DA; Koonin EV; Galperin MY
    J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational dynamics of metal-binding domains in Wilson disease protein: molecular insights into selective copper transfer.
    Rodriguez-Granillo A; Crespo A; Wittung-Stafshede P
    Biochemistry; 2009 Jun; 48(25):5849-63. PubMed ID: 19449859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved residues modulate copper release in human copper chaperone Atox1.
    Hussain F; Olson JS; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11158-63. PubMed ID: 18685091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The N-terminal metal-binding site 2 of the Wilson's Disease Protein plays a key role in the transfer of copper from Atox1.
    Walker JM; Huster D; Ralle M; Morgan CT; Blackburn NJ; Lutsenko S
    J Biol Chem; 2004 Apr; 279(15):15376-84. PubMed ID: 14754885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of Cu+ transport ATPases: interaction with CU+ chaperones and the role of transient metal-binding sites.
    Padilla-Benavides T; McCann CJ; Argüello JM
    J Biol Chem; 2013 Jan; 288(1):69-78. PubMed ID: 23184962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The different intermolecular interactions of the soluble copper-binding domains of the menkes protein, ATP7A.
    Banci L; Bertini I; Cantini F; Della-Malva N; Migliardi M; Rosato A
    J Biol Chem; 2007 Aug; 282(32):23140-6. PubMed ID: 17545667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tackling metal regulation and transport at the single-molecule level.
    Chen P; Andoy NM; Benítez JJ; Keller AM; Panda D; Gao F
    Nat Prod Rep; 2010 May; 27(5):757-67. PubMed ID: 20442963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-transfer mechanism from the human chaperone Atox1 to a metal-binding domain of Wilson disease protein.
    Rodriguez-Granillo A; Crespo A; Estrin DA; Wittung-Stafshede P
    J Phys Chem B; 2010 Mar; 114(10):3698-706. PubMed ID: 20166696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro thermodynamic dissection of human copper transfer from chaperone to target protein.
    Niemiec MS; Weise CF; Wittung-Stafshede P
    PLoS One; 2012; 7(5):e36102. PubMed ID: 22574136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper-mediated homo-dimerisation for the HAH1 metallochaperone.
    Tanchou V; Gas F; Urvoas A; Cougouluègne F; Ruat S; Averseng O; Quéméneur E
    Biochem Biophys Res Commun; 2004 Dec; 325(2):388-94. PubMed ID: 15530404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal binding domains 3 and 4 of the Wilson disease protein: solution structure and interaction with the copper(I) chaperone HAH1.
    Banci L; Bertini I; Cantini F; Rosenzweig AC; Yatsunyk LA
    Biochemistry; 2008 Jul; 47(28):7423-9. PubMed ID: 18558714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR characterization of copper-binding domains 4-6 of ATP7B .
    Fatemi N; Korzhnev DM; Velyvis A; Sarkar B; Forman-Kay JD
    Biochemistry; 2010 Oct; 49(39):8468-77. PubMed ID: 20799727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
    González-Guerrero M; Argüello JM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and functional reconstitution of the human Wilson copper ATPase, ATP7B.
    Portmann R; Solioz M
    FEBS Lett; 2005 Jul; 579(17):3589-95. PubMed ID: 15963506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.