These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 18247760)

  • 21. Inhibition on cochlear nerve fibers by the sound-activated olivocochlear bundle.
    Murata K; Tanahashi T; Horikawa J; Funai H
    Nagoya J Med Sci; 1980 Mar; 42(3-4):84-6. PubMed ID: 7383150
    [No Abstract]   [Full Text] [Related]  

  • 22. A biologically motivated neural network for phase extraction from complex sounds.
    Borst M; Langner G; Palm G
    Biol Cybern; 2004 Feb; 90(2):98-104. PubMed ID: 14999476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions.
    Neubauer H; Köppl C; Heil P
    J Neurophysiol; 2009 Jun; 101(6):3169-91. PubMed ID: 19357334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On lateral inhibition in the auditory system.
    Kral A; Majernik V
    Gen Physiol Biophys; 1996 Apr; 15(2):109-27. PubMed ID: 8899416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence that the compound action potential (CAP) from the auditory nerve is a stationary potential generated across dura mater.
    Brown DJ; Patuzzi RB
    Hear Res; 2010 Aug; 267(1-2):12-26. PubMed ID: 20430085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simulation of chopper neurons in the cochlear nucleus with wideband input from onset neurons.
    Bahmer A; Langner G
    Biol Cybern; 2009 Jan; 100(1):21-33. PubMed ID: 19015873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cascade autocorrelation model of pitch perception.
    Balaguer-Ballester E; Denham SL; Meddis R
    J Acoust Soc Am; 2008 Oct; 124(4):2186-95. PubMed ID: 19062858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oscillating neurons in the cochlear nucleus: I. Experimental basis of a simulation paradigm.
    Bahmer A; Langner G
    Biol Cybern; 2006 Oct; 95(4):371-9. PubMed ID: 16847666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating temporal asymmetry using masking period patterns and models of peripheral auditory processing.
    Lentz JJ; Shen Y
    J Acoust Soc Am; 2011 May; 129(5):3194-205. PubMed ID: 21568421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Medial olivocochlear efferent inhibition of basilar-membrane responses to clicks: evidence for two modes of cochlear mechanical excitation.
    Guinan JJ; Cooper NP
    J Acoust Soc Am; 2008 Aug; 124(2):1080-92. PubMed ID: 18681598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of the masking phenomenon by the crossed part of the medial olivocochlear bundle.
    Bonfils P; Puel JL; Orès S; Pujol R
    Arch Otorhinolaryngol; 1987; 244(4):198-203. PubMed ID: 3689198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Functioning of the olivocochlear bundle in cats during exposure to paired tonal signals].
    Lapchenko VN; Kulikov GA
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1978; (2):80-3. PubMed ID: 638214
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.
    Nourski KV; Abbas PJ; Miller CA; Robinson BK; Jeng FC
    Hear Res; 2005 Apr; 202(1-2):141-53. PubMed ID: 15811706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of contralateral sound stimulation on the distortion product 2F1-F2: evidence that the medial efferent system is involved.
    Puel JL; Rebillard G
    J Acoust Soc Am; 1990 Apr; 87(4):1630-5. PubMed ID: 2341667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Basic maps in the auditory midbrain.
    Herrnberger B; Kempf S; Ehret G
    Biol Cybern; 2002 Oct; 87(4):231-40. PubMed ID: 12386739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Tonotopography of the audiotory pathway: Anatomical and physiological findings (author's transl)].
    Pirsig W
    HNO; 1974 Oct; 22(10):309-16. PubMed ID: 4448710
    [No Abstract]   [Full Text] [Related]  

  • 37. Variation in the phase of response to low-frequency pure tones in the guinea pig auditory nerve as functions of stimulus level and frequency.
    Palmer AR; Shackleton TM
    J Assoc Res Otolaryngol; 2009 Jun; 10(2):233-50. PubMed ID: 19093151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type.
    Schaette R; Kempter R
    Hear Res; 2008 Jun; 240(1-2):57-72. PubMed ID: 18396381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response of the auditory nerve to sinusoidal electrical stimulation: effects of high-rate pulse trains.
    Runge-Samuelson CL; Abbas PJ; Rubinstein JT; Miller CA; Robinson BK
    Hear Res; 2004 Aug; 194(1-2):1-13. PubMed ID: 15276671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses.
    Woo J; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2009 May; 56(5):1348-59. PubMed ID: 19473930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.