These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18247765)

  • 1. Wavelet and matching pursuit estimates of the transient-evoked otoacoustic emission latency.
    Notaro G; Al-Maamury AM; Moleti A; Sisto R
    J Acoust Soc Am; 2007 Dec; 122(6):3576-85. PubMed ID: 18247765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of sources of distortion product otoacoustic emissions by onset-decomposition.
    Vetesník A; Turcanu D; Dalhoff E; Gummer AW
    Hear Res; 2009 Oct; 256(1-2):21-38. PubMed ID: 19523509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronized spontaneous otoacoustic emissions analyzed in a time-frequency domain.
    Jedrzejczak WW; Blinowska KJ; Kochanek K; Skarzynski H
    J Acoust Soc Am; 2008 Dec; 124(6):3720-9. PubMed ID: 19206799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-frequency domain filtering of evoked otoacoustic emissions.
    Moleti A; Longo F; Sisto R
    J Acoust Soc Am; 2012 Oct; 132(4):2455-67. PubMed ID: 23039440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient evoked otoacoustic emission latency and estimates of cochlear tuning in preterm neonates.
    Moleti A; Sisto R; Paglialonga A; Sibella F; Anteunis L; Parazzini M; Tognola G
    J Acoust Soc Am; 2008 Nov; 124(5):2984-94. PubMed ID: 19045786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cochlear active mechanisms in young normal-hearing subjects affected by Williams syndrome: time-frequency analysis of otoacoustic emissions.
    Paglialonga A; Barozzi S; Brambilla D; Soi D; Cesarani A; Gagliardi C; Comiotto E; Spreafico E; Tognola G
    Hear Res; 2011 Feb; 272(1-2):157-67. PubMed ID: 20969939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-frequency transient evoked otoacoustic emissions acquisition with auditory canal compensated clicks using swept-tone analysis.
    Bennett CL; Ozdamar O
    J Acoust Soc Am; 2010 Apr; 127(4):2410-9. PubMed ID: 20370024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelet-type analysis of transient-evoked otoacoustic emissions.
    Pasanen EG; Travis JD; Thornhill RJ
    Biomed Sci Instrum; 1994; 30():75-80. PubMed ID: 7948653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the matching pursuit algorithm with a dictionary of asymmetric waveforms in the analysis of transient evoked otoacoustic emissions.
    Jedrzejczak WW; Kwaskiewicz K; Blinowska KJ; Kochanek K; Skarzynski H
    J Acoust Soc Am; 2009 Dec; 126(6):3137-46. PubMed ID: 20000927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of suppression of otoacoustic emissions evoked by two-tone bursts.
    Jedrzejczak WW; Smurzynski J; Blinowska KJ
    Hear Res; 2008 Jan; 235(1-2):80-9. PubMed ID: 18082347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient evoked otoacoustic emission latency and cochlear tuning at different stimulus levels.
    Sisto R; Moleti A
    J Acoust Soc Am; 2007 Oct; 122(4):2183-90. PubMed ID: 17902854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swept-tone transient-evoked otoacoustic emissions.
    Bennett CL; Özdamar Ö
    J Acoust Soc Am; 2010 Oct; 128(4):1833-44. PubMed ID: 20968356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelet analysis of click-evoked otoacoustic emissions.
    Tognola G; Grandori F; Ravazzani P
    IEEE Trans Biomed Eng; 1998 Jun; 45(6):686-97. PubMed ID: 9609934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution time-frequency analysis of otoacoustic emissions.
    Blinowska KJ; Durka PJ; Skierski A; Grandori F; Tognola G
    Technol Health Care; 1997 Dec; 5(6):407-18. PubMed ID: 9696160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Evoked otoacoustic emissions in adults. Criteria for evaluation in clinical use].
    Uppenkamp S; Neumann J; Aurbach G; Kollmeier B
    HNO; 1992 Nov; 40(11):422-8. PubMed ID: 1473980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient-evoked otoacoustic emission generators in a nonlinear cochlea.
    Moleti A; Botti T; Sisto R
    J Acoust Soc Am; 2012 Apr; 131(4):2891-903. PubMed ID: 22501067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient evoked otoacoustic emission input/output function and cochlear reflectivity: experiment and model.
    Sisto R; Moleti A
    J Acoust Soc Am; 2008 Nov; 124(5):2995-3008. PubMed ID: 19045787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions.
    Bentsen T; Harte JM; Dau T
    J Acoust Soc Am; 2011 Jun; 129(6):3797-807. PubMed ID: 21682403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cochlear reflectivity in transmission-line models and otoacoustic emission characteristic time delays.
    Sisto R; Moleti A; Shera CA
    J Acoust Soc Am; 2007 Dec; 122(6):3554-61. PubMed ID: 18247763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.