These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18247866)

  • 1. An improved acoustical wave propagator method and its application to a duct structure.
    Peng SZ; Cheng L
    J Acoust Soc Am; 2008 Feb; 123(2):610-21. PubMed ID: 18247866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustical wave propagator for time-domain flexural waves in thin plates.
    Peng SZ; Pan J
    J Acoust Soc Am; 2004 Feb; 115(2):467-74. PubMed ID: 15000158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media.
    Liu QH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):1044-55. PubMed ID: 18244259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extended Fourier pseudospectral time-domain method for atmospheric sound propagation.
    Hornikx M; Waxler R; Forssén J
    J Acoust Soc Am; 2010 Oct; 128(4):1632-46. PubMed ID: 20968336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustical wave propagator.
    Pan J; Wang JB
    J Acoust Soc Am; 2000 Aug; 108(2):481-7. PubMed ID: 10955611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane covered duct lining for high-frequency noise attenuation: prediction using a Chebyshev collocation method.
    Huang L
    J Acoust Soc Am; 2008 Nov; 124(5):2918-29. PubMed ID: 19045780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density matrix based time-dependent density functional theory and the solution of its linear response in real time domain.
    Wang F; Yam CY; Chen G; Fan K
    J Chem Phys; 2007 Apr; 126(13):134104. PubMed ID: 17430013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time propagation of the reduced one-electron density matrix in atom-centered Gaussian orbitals: application to absorption spectra of silicon clusters.
    Sun J; Song J; Zhao Y; Liang WZ
    J Chem Phys; 2007 Dec; 127(23):234107. PubMed ID: 18154375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of second-order split operator and Chebyshev propagator in wave packet based state-to-state reactive scattering calculations.
    Sun Z; Lee SY; Guo H; Zhang DH
    J Chem Phys; 2009 May; 130(17):174102. PubMed ID: 19425764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long time wave packet dynamics from energy eigenfunctions: nonuniform energy resolution via adaptive bisection fast Fourier transformation.
    Khorasani RR; Dumont RS
    J Chem Phys; 2007 Nov; 127(18):184107. PubMed ID: 18020630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using preconditioned adaptive step size Runge-Kutta methods for solving the time-dependent Schrödinger equation.
    Tremblay JC; Carrington T
    J Chem Phys; 2004 Dec; 121(23):11535-41. PubMed ID: 15634118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.
    Temel B; Mills G; Metiu H
    J Phys Chem A; 2008 Mar; 112(12):2728-37. PubMed ID: 18303864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of thermally induced photoacoustic wave propagation using a pseudospectral time-domain method.
    Sheu YL; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1104-12. PubMed ID: 19473928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple and efficient evolution operator for time-dependent Hamiltonians: the Taylor expansion.
    Lauvergnat D; Blasco S; Chapuisat X; Nauts A
    J Chem Phys; 2007 May; 126(20):204103. PubMed ID: 17552750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling ultrasonic transient scattering from biological tissues including their dispersive properties directly in the time domain.
    Norton GV; Novarini JC
    Mol Cell Biomech; 2007 Jun; 4(2):75-85. PubMed ID: 17937112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Car-Parrinello simulations with a real space method.
    Schmid R
    J Comput Chem; 2004 Apr; 25(6):799-812. PubMed ID: 15011252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of structural intensity using boundary element method-based nearfield acoustical holography.
    Saijyou K
    J Acoust Soc Am; 2007 Jun; 121(6):3493-500. PubMed ID: 17552701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wave-based finite element analysis for acoustic transmission in fluid-filled elastic waveguides.
    Peplow AT
    J Acoust Soc Am; 2009 Apr; 125(4):2053-63. PubMed ID: 19354381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.