These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 18247868)
1. Measurements of inner and outer streaming vortices in a standing waveguide using laser doppler velocimetry. Moreau S; Bailliet H; Valière JC J Acoust Soc Am; 2008 Feb; 123(2):640-7. PubMed ID: 18247868 [TBL] [Abstract][Full Text] [Related]
2. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers. Reyt I; Bailliet H; Valière JC J Acoust Soc Am; 2014 Jan; 135(1):27-37. PubMed ID: 24437742 [TBL] [Abstract][Full Text] [Related]
3. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell. Reyt I; Daru V; Bailliet H; Moreau S; Valière JC; Baltean-Carlès D; Weisman C J Acoust Soc Am; 2013 Sep; 134(3):1791-801. PubMed ID: 23967913 [TBL] [Abstract][Full Text] [Related]
4. Measurement of acoustic streaming in a closed-loop traveling wave resonator using laser Doppler velocimetry. Desjouy C; Penelet G; Lotton P; Blondeau J J Acoust Soc Am; 2009 Nov; 126(5):2176-83. PubMed ID: 19894797 [TBL] [Abstract][Full Text] [Related]
5. Effect of a stack on Rayleigh streaming cells investigated by laser Doppler velocimetry for application to thermoacoustic devices (L). Moreau S; Bailliet H; Valière JC J Acoust Soc Am; 2009 Jun; 125(6):3514-7. PubMed ID: 19507931 [TBL] [Abstract][Full Text] [Related]
6. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels. Daru V; Reyt I; Bailliet H; Weisman C; Baltean-Carlès D J Acoust Soc Am; 2017 Jan; 141(1):563. PubMed ID: 28147596 [TBL] [Abstract][Full Text] [Related]
7. Experimental investigation of the influence of natural convection and end-effects on Rayleigh streaming in a thermoacoustic engine. Ramadan IA; Bailliet H; Valière JC J Acoust Soc Am; 2018 Jan; 143(1):361. PubMed ID: 29390757 [TBL] [Abstract][Full Text] [Related]
8. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation. Bernassau AL; Glynne-Jones P; Gesellchen F; Riehle M; Hill M; Cumming DR Ultrasonics; 2014 Jan; 54(1):268-74. PubMed ID: 23725599 [TBL] [Abstract][Full Text] [Related]
9. Velocity profiles and shear strain rate variability in the USP Dissolution Testing Apparatus 2 at different impeller agitation speeds. Bai G; Wang Y; Armenante PM Int J Pharm; 2011 Jan; 403(1-2):1-14. PubMed ID: 20883758 [TBL] [Abstract][Full Text] [Related]
10. Secondary velocity fields in the conducting airways of the human lung. Fresconi FE; Prasad AK J Biomech Eng; 2007 Oct; 129(5):722-32. PubMed ID: 17887898 [TBL] [Abstract][Full Text] [Related]
11. A finite element model for simulating acoustic streaming in cystic breast lesions with experimental validation. Nightingale KR; Trahey GE IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):201-14. PubMed ID: 18238532 [TBL] [Abstract][Full Text] [Related]
17. Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. Hamilton MF; Ilinskii YA; Zabolotskaya EA J Acoust Soc Am; 2003 Jan; 113(1):153-60. PubMed ID: 12558255 [TBL] [Abstract][Full Text] [Related]
18. Role of vortices in cavitation formation in the flow across a mechanical heart valve. Li CP; Lu PC; Liu JS; Lo CW; Hwang NH J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474 [TBL] [Abstract][Full Text] [Related]
19. [Flow field test on the tangential section of polypropylene tubular membrane module annular gap in rotating linear tangential flow]. Wang C; Chen W; Li J; Jiang G Huan Jing Ke Xue; 2002 Jul; 23(4):57-61. PubMed ID: 12371104 [TBL] [Abstract][Full Text] [Related]