These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18247878)

  • 1. Broadband acoustic scattering measurements of underwater unexploded ordnance (UXO).
    Bucaro JA; Houston BH; Saniga M; Dragonette LR; Yoder T; Dey S; Kraus L; Carin L
    J Acoust Soc Am; 2008 Feb; 123(2):738-46. PubMed ID: 18247878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bistatic, above-critical angle scattering measurements of fully buried unexploded ordnance (UXO) and clutter.
    Waters ZJ; Simpson HJ; Sarkissian A; Dey S; Houston BH; Bucaro JA; Yoder TJ
    J Acoust Soc Am; 2012 Nov; 132(5):3076-85. PubMed ID: 23145593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bistatic scattering from submerged unexploded ordnance lying on a sediment.
    Bucaro JA; Simpson H; Kraus L; Dragonette LR; Yoder T; Houston BH
    J Acoust Soc Am; 2009 Nov; 126(5):2315-23. PubMed ID: 19894814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic identification of buried underwater unexploded ordnance using a numerically trained classifier (L).
    Bucaro JA; Waters ZJ; Houston BH; Simpson HJ; Sarkissian A; Dey S; Yoder TJ
    J Acoust Soc Am; 2012 Dec; 132(6):3614-7. PubMed ID: 23231093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Underwater acoustic characterisation of unexploded ordnance disposal using deflagration.
    Robinson SP; Wang L; Cheong SH; Lepper PA; Marubini F; Hartley JP
    Mar Pollut Bull; 2020 Nov; 160():111646. PubMed ID: 33181928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explosion probability of unexploded ordnance: expert beliefs.
    MacDonald JA; Small MJ; Morgan MG
    Risk Anal; 2008 Aug; 28(4):825-41. PubMed ID: 18627542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled and in situ target strengths of the jumbo squid Dosidicus gigas and identification of potential acoustic scattering sources.
    Benoit-Bird KJ; Gilly WF; Au WW; Mate B
    J Acoust Soc Am; 2008 Mar; 123(3):1318-28. PubMed ID: 18345820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injuries associated with landmines and unexploded ordnance--Afghanistan, 1997-2002.
    Centers for Disease Control and Prevention (CDC)
    MMWR Morb Mortal Wkly Rep; 2003 Sep; 52(36):859-62. PubMed ID: 12970617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting forward scattering for detecting submerged proud/half-buried unexploded ordnance.
    Bucaro JA; Houston BH; Simpson H; Dragonette LR; Kraus L; Yoder T
    J Acoust Soc Am; 2009 Dec; 126(6):EL171-6. PubMed ID: 20000890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic scattering from double-diffusive microstructure.
    Lavery AC; Ross T
    J Acoust Soc Am; 2007 Sep; 122(3):1449. PubMed ID: 17927406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: design/operation/preliminary results.
    Kennedy JL; Marston TM; Lee K; Lopes JL; Lim R
    Rev Sci Instrum; 2014 Jan; 85(1):014901. PubMed ID: 24517797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic characterisation of unexploded ordnance disposal in the North Sea using high order detonations.
    Robinson SP; Wang L; Cheong SH; Lepper PA; Hartley JP; Thompson PM; Edwards E; Bellmann M
    Mar Pollut Bull; 2022 Nov; 184():114178. PubMed ID: 36206616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Condition of in situ unexploded ordnance.
    Taylor S; Bigl S; Packer B
    Sci Total Environ; 2015 Feb; 505():762-9. PubMed ID: 25461079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ comparison of high-order detonations and low-order deflagration methodologies for underwater unexploded ordnance (UXO) disposal.
    Lepper PA; Cheong SH; Robinson SP; Wang L; Tougaard J; Griffiths ET; Hartley JP
    Mar Pollut Bull; 2024 Feb; 199():115965. PubMed ID: 38219294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement and modeling of the acoustic field near an underwater vehicle and implications for acoustic source localization.
    Lepper PA; D'Spain GL
    J Acoust Soc Am; 2007 Aug; 122(2):892-905. PubMed ID: 17672639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tank measurements of scattering from a resin-filled fiberglass spherical shell with internal flaws.
    Tesei A; Guerrini P; Zampolli M
    J Acoust Soc Am; 2008 Aug; 124(2):827-40. PubMed ID: 18681575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-slope simulation of acoustic backscatter from a physical model of an elastic ocean bottom.
    Soukup RJ; Canepa G; Simpson HJ; Summers JE; Gragg RF
    J Acoust Soc Am; 2007 Nov; 122(5):2551-9. PubMed ID: 18189546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of broadband active acoustic systems using a single standard spherical target.
    Stanton TK; Chu D
    J Acoust Soc Am; 2008 Jul; 124(1):128-36. PubMed ID: 18646960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing sites contaminated with unexploded ordnance: statistical modeling of ordnance spatial distribution.
    Macdonald JA; Small MJ
    Environ Sci Technol; 2006 Feb; 40(3):931-8. PubMed ID: 16509339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A High-Performance Portable Transient Electro-Magnetic Sensor for Unexploded Ordnance Detection.
    Wang H; Chen S; Zhang S; Yuan Z; Zhang H; Fang D; Zhu J
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29149059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.