These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 18247884)

  • 21. Experimental and numerical investigations on melamine wedges.
    Schneider S
    J Acoust Soc Am; 2008 Sep; 124(3):1568-76. PubMed ID: 19045648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boundary element model for simulating sound propagation and source localization within the lungs.
    Ozer MB; Acikgoz S; Royston TJ; Mansy HA; Sandler RH
    J Acoust Soc Am; 2007 Jul; 122(1):657-61. PubMed ID: 17614522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of three measurement techniques for the normal absorption coefficient of sound absorbing materials in the free field.
    Hirosawa K; Takashima K; Nakagawa H; Kon M; Yamamoto A; Lauriks W
    J Acoust Soc Am; 2009 Dec; 126(6):3020-7. PubMed ID: 20000915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the sound transmission between rooms coupled through partition walls by using a diffusion model.
    Billon A; Foy C; Picaut J; Valeau V; Sakout A
    J Acoust Soc Am; 2008 Jun; 123(6):4261-71. PubMed ID: 18537377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasonic airborne insertion loss measurements at normal incidence (L).
    Farley J; Anderson BE
    J Acoust Soc Am; 2010 Dec; 128(6):3305-7. PubMed ID: 21218864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multilevel fast multipole algorithm for acoustic wave scattering by truncated ground with trenches.
    Tong MS; Chew WC; White MJ
    J Acoust Soc Am; 2008 May; 123(5):2513-21. PubMed ID: 18529170
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Moving microphone arrays to reduce spatial aliasing in the beamforming technique: theoretical background and numerical investigation.
    Cigada A; Lurati M; Ripamonti F; Vanali M
    J Acoust Soc Am; 2008 Dec; 124(6):3648-3658. PubMed ID: 19206793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing low frequency sound transmission measurements using a synthesis method.
    Bravo T; Maury C
    J Acoust Soc Am; 2007 Aug; 122(2):869-80. PubMed ID: 17672637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustic contributions of a sound absorbing blanket placed in a double panel structure: absorption versus transmission.
    Doutres O; Atalla N
    J Acoust Soc Am; 2010 Aug; 128(2):664-71. PubMed ID: 20707436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Absorption and impedance boundary conditions for phased geometrical-acoustics methods.
    Jeong CH
    J Acoust Soc Am; 2012 Oct; 132(4):2347-58. PubMed ID: 23039431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noise control by sonic crystal barriers made of recycled materials.
    Sánchez-Dehesa J; Garcia-Chocano VM; Torrent D; Cervera F; Cabrera S; Simon F
    J Acoust Soc Am; 2011 Mar; 129(3):1173-83. PubMed ID: 21428481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The room acoustic rendering equation.
    Siltanen S; Lokki T; Kiminki S; Savioja L
    J Acoust Soc Am; 2007 Sep; 122(3):1624. PubMed ID: 17927422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating.
    Groby JP; Lauriks W; Vigran TE
    J Acoust Soc Am; 2010 May; 127(5):2865-74. PubMed ID: 21117737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active acoustical impedance using distributed electrodynamical transducers.
    Collet M; David P; Berthillier M
    J Acoust Soc Am; 2009 Feb; 125(2):882-94. PubMed ID: 19206865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental study of a smart foam sound absorber.
    Leroy P; Berry A; Herzog P; Atalla N
    J Acoust Soc Am; 2011 Jan; 129(1):154-64. PubMed ID: 21302998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of enclosure of a grinding machine for the noise attenuation.
    Gorai AK; Mukhopadhyay AK; Pal AK; Dey UK
    J Environ Sci Eng; 2008 Apr; 50(2):141-6. PubMed ID: 19295099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicted attenuation of sound in a rigid-porous ground from an airborne source.
    Li KM
    J Acoust Soc Am; 2008 Mar; 123(3):1352-63. PubMed ID: 18345824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibroacoustic properties of thin micro-perforated panel absorbers.
    Bravo T; Maury C; Pinhède C
    J Acoust Soc Am; 2012 Aug; 132(2):789-98. PubMed ID: 22894201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.
    Gautier G; Kelders L; Groby JP; Dazel O; De Ryck L; Leclaire P
    J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing sound absorption and transmission through flexible multi-layer micro-perforated structures.
    Bravo T; Maury C; Pinhède C
    J Acoust Soc Am; 2013 Nov; 134(5):3663-73. PubMed ID: 24180777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.