These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 18247886)

  • 1. Acoustical determination of the parameters governing thermal dissipation in porous media.
    Olny X; Panneton R
    J Acoust Soc Am; 2008 Feb; 123(2):814-24. PubMed ID: 18247886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves.
    Fellah ZE; Fellah M; Mitri FG; Sebaa N; Depollier C; Lauriks W
    Rev Sci Instrum; 2007 Nov; 78(11):114902. PubMed ID: 18052497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring static thermal permeability and inertial factor of rigid porous materials (L).
    Sadouki M; Fellah M; Fellah ZE; Ogam E; Sebaa N; Mitri FG; Depollier C
    J Acoust Soc Am; 2011 Nov; 130(5):2627-30. PubMed ID: 22087887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients.
    Groby JP; Ogam E; De Ryck L; Sebaa N; Lauriks W
    J Acoust Soc Am; 2010 Feb; 127(2):764-72. PubMed ID: 20136199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustical determination of the parameters governing viscous dissipation in porous media.
    Panneton R; Olny X
    J Acoust Soc Am; 2006 Apr; 119(4):2027-40. PubMed ID: 16642816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-parameter analytical model for the acoustical properties of porous media.
    Horoshenkov KV; Hurrell A; Groby JP
    J Acoust Soc Am; 2019 Apr; 145(4):2512. PubMed ID: 31046383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of all six parameters of Johnson-Champoux-Allard-Lafarge model for acoustical porous materials from impedance tube measurements.
    Jaouen L; Gourdon E; Glé P
    J Acoust Soc Am; 2020 Oct; 148(4):1998. PubMed ID: 33138525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymptotic limits of some models for sound propagation in porous media and the assignment of the pore characteristic lengths.
    Horoshenkov KV; Groby JP; Dazel O
    J Acoust Soc Am; 2016 May; 139(5):2463. PubMed ID: 27250142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing rigid frame porous layer absorption with three-dimensional periodic irregularities.
    Groby JP; Brouard B; Dazel O; Nennig B; Kelders L
    J Acoust Soc Am; 2013 Feb; 133(2):821-31. PubMed ID: 23363101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
    Ogam E; Depollier C; Fellah ZE
    Rev Sci Instrum; 2010 Sep; 81(9):094902. PubMed ID: 20887001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoacoustic properties of fibrous materials.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jun; 127(6):3470-84. PubMed ID: 20550247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of characteristic impedance and wave number of porous material using pulse-tube and transfer-matrix methods.
    Sun L; Hou H; Dong LY; Wan FR
    J Acoust Soc Am; 2009 Dec; 126(6):3049-56. PubMed ID: 20000918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests).
    Horoshenkov KV; Khan A; Bécot FX; Jaouen L; Sgard F; Renault A; Amirouche N; Pompoli F; Prodi N; Bonfiglio P; Pispola G; Asdrubali F; Hübelt J; Atalla N; Amédin CK; Lauriks W; Boeckx L
    J Acoust Soc Am; 2007 Jul; 122(1):345-53. PubMed ID: 17614494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative analysis of acoustic energy models for churches.
    Berardi U; Cirillo E; Martellotta F
    J Acoust Soc Am; 2009 Oct; 126(4):1838-49. PubMed ID: 19813798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the irregular microgeometry of polyurethane foam on the macroscopic acoustic behavior predicted by a unit-cell model.
    Doutres O; Ouisse M; Atalla N; Ichchou M
    J Acoust Soc Am; 2014 Oct; 136(4):1666-81. PubMed ID: 25324070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves.
    Fellah ZE; Depollier C; Berger S; Lauriks W; Trompette P; Chapelon JY
    J Acoust Soc Am; 2003 Nov; 114(5):2561-9. PubMed ID: 14649992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An application of the Peano series expansion to predict sound propagation in materials with continuous pore stratification.
    Geslain A; Groby JP; Dazel O; Mahasaranon S; Horoshenkov KV; Khan A
    J Acoust Soc Am; 2012 Jul; 132(1):208-15. PubMed ID: 22779470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation.
    Guan W; Hu H; He X
    J Acoust Soc Am; 2009 Apr; 125(4):1942-50. PubMed ID: 19354370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-up approach for microstructure optimization of sound absorbing materials.
    Perrot C; Chevillotte F; Panneton R
    J Acoust Soc Am; 2008 Aug; 124(2):940-8. PubMed ID: 18681586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Biot waves in porous media with application to unconsolidated granular media.
    Dazel O; Tournat V
    J Acoust Soc Am; 2010 Feb; 127(2):692-702. PubMed ID: 20136191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.