These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 18247915)
1. A probabilistic framework for landmark detection based on phonetic features for automatic speech recognition. Juneja A; Espy-Wilson C J Acoust Soc Am; 2008 Feb; 123(2):1154-68. PubMed ID: 18247915 [TBL] [Abstract][Full Text] [Related]
2. Classification of stop place in consonant-vowel contexts using feature extrapolation of acoustic-phonetic features in telephone speech. Lee JW; Choi JY; Kang HG J Acoust Soc Am; 2012 Feb; 131(2):1536-46. PubMed ID: 22352523 [TBL] [Abstract][Full Text] [Related]
3. Modeling the temporal dynamics of distinctive feature landmark detectors for speech recognition. Jansen A; Niyogi P J Acoust Soc Am; 2008 Sep; 124(3):1739-58. PubMed ID: 19045664 [TBL] [Abstract][Full Text] [Related]
4. Automatic recognition of pathological phoneme production. Wielgat R; Zieliński TP; Woźniak T; Grabias S; Król D Folia Phoniatr Logop; 2008; 60(6):323-31. PubMed ID: 19011305 [TBL] [Abstract][Full Text] [Related]
5. Analysis of acoustic parameters for consonant voicing classification in clean and telephone speech. Lee SM; Choi JY J Acoust Soc Am; 2012 Mar; 131(3):EL197-202. PubMed ID: 22423808 [TBL] [Abstract][Full Text] [Related]
6. Experiments with fast Fourier transform, linear predictive and cepstral coefficients in dysarthric speech recognition algorithms using hidden Markov Model. Polur PD; Miller GE IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):558-61. PubMed ID: 16425838 [TBL] [Abstract][Full Text] [Related]
7. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures. Darch J; Milner B; Vaseghi S J Acoust Soc Am; 2008 Dec; 124(6):3989-4000. PubMed ID: 19206822 [TBL] [Abstract][Full Text] [Related]
8. Acoustic sleepiness detection: framework and validation of a speech-adapted pattern recognition approach. Krajewski J; Batliner A; Golz M Behav Res Methods; 2009 Aug; 41(3):795-804. PubMed ID: 19587194 [TBL] [Abstract][Full Text] [Related]
9. Statistical modeling of speech Poincaré sections in combination of frequency analysis to improve speech recognition performance. Jafari A; Almasganj F; Bidhendi MN Chaos; 2010 Sep; 20(3):033106. PubMed ID: 20887046 [TBL] [Abstract][Full Text] [Related]
10. Auditory-model based robust feature selection for speech recognition. Koniaris C; Kuropatwinski M; Kleijn WB J Acoust Soc Am; 2010 Feb; 127(2):EL73-9. PubMed ID: 20136182 [TBL] [Abstract][Full Text] [Related]
11. Segregation of unvoiced speech from nonspeech interference. Hu G; Wang D J Acoust Soc Am; 2008 Aug; 124(2):1306-19. PubMed ID: 18681616 [TBL] [Abstract][Full Text] [Related]
12. EMG-based speech recognition using hidden markov models with global control variables. Lee KS IEEE Trans Biomed Eng; 2008 Mar; 55(3):930-40. PubMed ID: 18334384 [TBL] [Abstract][Full Text] [Related]
13. Structural design of hidden Markov model speech recognizer using multivalued phonetic features: comparison with segmental speech units. Deng L; Erler K J Acoust Soc Am; 1992 Dec; 92(6):3058-67. PubMed ID: 1474221 [TBL] [Abstract][Full Text] [Related]
14. Investigation of an HMM/ANN hybrid structure in pattern recognition application using cepstral analysis of dysarthric (distorted) speech signals. Polur PD; Miller GE Med Eng Phys; 2006 Oct; 28(8):741-8. PubMed ID: 16359906 [TBL] [Abstract][Full Text] [Related]
15. Effects of training on the acoustic phonetic representation of synthetic speech. Francis AL; Nusbaum HC; Fenn K J Speech Lang Hear Res; 2007 Dec; 50(6):1445-65. PubMed ID: 18055767 [TBL] [Abstract][Full Text] [Related]
16. Static features in real-time recognition of isolated vowels at high pitch. Ferreira AJ J Acoust Soc Am; 2007 Oct; 122(4):2389-404. PubMed ID: 17902873 [TBL] [Abstract][Full Text] [Related]
17. Modeling the use of durational information in human spoken-word recognition. Scharenborg O J Acoust Soc Am; 2010 Jun; 127(6):3758-70. PubMed ID: 20550274 [TBL] [Abstract][Full Text] [Related]
18. A computer-aided MFCC-based HMM system for automatic auscultation. Chauhan S; Wang P; Sing Lim C; Anantharaman V Comput Biol Med; 2008 Feb; 38(2):221-33. PubMed ID: 18045582 [TBL] [Abstract][Full Text] [Related]
19. Segmenting words from natural speech: subsegmental variation in segmental cues. Rytting CA; Brew C; Fosler-Lussier E J Child Lang; 2010 Jun; 37(3):513-43. PubMed ID: 20307345 [TBL] [Abstract][Full Text] [Related]
20. A constraint-based evolutionary learning approach to the expectation maximization for optimal estimation of the hidden Markov model for speech signal modeling. Huda S; Yearwood J; Togneri R IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):182-97. PubMed ID: 19068441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]