These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 18247998)

  • 1. A multiscale model for kinetics of formation and disintegration of spherical micelles.
    Mohan G; Kopelevich DI
    J Chem Phys; 2008 Jan; 128(4):044905. PubMed ID: 18247998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boltzmann distributions and slow relaxation in systems with spherical and cylindrical micelles.
    Kuni FM; Shchekin AK; Rusanov AI; Grinin AP
    Langmuir; 2006 Feb; 22(4):1534-43. PubMed ID: 16460071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass transport in micellar surfactant solutions: 1. Relaxation of micelle concentration, aggregation number and polydispersity.
    Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Jan; 119(1):1-16. PubMed ID: 16303116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective degrees of freedom involved in absorption and desorption of surfactant molecules in spherical non-ionic micelles.
    Ahn YN; Mohan G; Kopelevich DI
    J Chem Phys; 2012 Oct; 137(16):164902. PubMed ID: 23126738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution.
    Stephenson BC; Goldsipe A; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(8):2357-71. PubMed ID: 18247591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation of self-assembly of n-decyltrimethylammonium bromide micelles.
    Jorge M
    Langmuir; 2008 Jun; 24(11):5714-25. PubMed ID: 18454560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse-grained kinetic computations for rare events: application to micelle formation.
    Kopelevich DI; Panagiotopoulos AZ; Kevrekidis IG
    J Chem Phys; 2005 Jan; 122(4):44908. PubMed ID: 15740299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation work at polydisperse micellization: ideal solution and "dressed micelle" models comparing to molecular dynamics simulations.
    Burov SV; Shchekin AK
    J Chem Phys; 2010 Dec; 133(24):244109. PubMed ID: 21197978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micellization and relaxation in solution with spherical micelles via the discrete Becker-Döring equations at different total surfactant concentrations.
    Babintsev I; Adzhemyan L; Shchekin A
    J Chem Phys; 2012 Jul; 137(4):044902. PubMed ID: 22852650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principal role of the stepwise aggregation mechanism in ionic surfactant solutions near the critical micelle concentration. Molecular dynamics study.
    Burov SV; Vanin AA; Brodskaya EN
    J Phys Chem B; 2009 Aug; 113(31):10715-20. PubMed ID: 19591445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of ionic and nonionic surfactant micelles with a generalized Born implicit-solvent model.
    Wang Y; Wallace JA; Koenig PH; Shen JK
    J Comput Chem; 2011 Aug; 32(11):2348-58. PubMed ID: 21544841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable parameters for the structural control of reverse micelles in glycerol monoisostearate/oil systems: a SAXS study.
    Shrestha LK; Shrestha RG; Varade D; Aramaki K
    Langmuir; 2009 Apr; 25(8):4435-42. PubMed ID: 19243155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 1. Theory.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1634-40. PubMed ID: 18198856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of micellisation and relaxation of cylindrical micelles described by the difference Becker-Döring equation.
    Babintsev IA; Adzhemyan LTs; Shchekin AK
    Soft Matter; 2014 Apr; 10(15):2619-31. PubMed ID: 24647594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology and mechanical properties of surfactant aggregates at water-silica interfaces: molecular dynamics simulations.
    Shah K; Chiu P; Jain M; Fortes J; Moudgil B; Sinnott S
    Langmuir; 2005 Jun; 21(12):5337-42. PubMed ID: 15924458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the radius and the apparent charge of a micelle from electrical conductivity measurements by using a transport theory: explicit equations for practical use.
    Durand-Vidal S; Jardat M; Dahirel V; Bernard O; Perrigaud K; Turq P
    J Phys Chem B; 2006 Aug; 110(31):15542-7. PubMed ID: 16884277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New coarse-graining procedure for the dynamics of charged spherical nanoparticles in solution.
    Dahirel V; Jardat M; Dufrêche JF; Turq P
    J Chem Phys; 2007 Mar; 126(11):114108. PubMed ID: 17381197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport coefficients of aqueous dodecyltrimethylammonium bromide solutions: comparison between experiments, analytical calculations and numerical simulations.
    Jardat M; Durand-Vidal S; Da Mota N; Turq P
    J Chem Phys; 2004 Apr; 120(13):6268-73. PubMed ID: 15267514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoscopic simulation of the crossing dynamics at an entanglement point of surfactant threadlike micelles.
    Yamamoto S; Hyodo SA
    J Chem Phys; 2005 May; 122(20):204907. PubMed ID: 15945777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.