These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 18248368)
1. Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. Micheletti E; Colica G; Viti C; Tamagnini P; De Philippis R J Appl Microbiol; 2008 Jul; 105(1):88-94. PubMed ID: 18248368 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria. De Philippis R; Paperi R; Sili C Biodegradation; 2007 Apr; 18(2):181-7. PubMed ID: 16758273 [TBL] [Abstract][Full Text] [Related]
3. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. De Philippis R; Colica G; Micheletti E Appl Microbiol Biotechnol; 2011 Nov; 92(4):697-708. PubMed ID: 21983706 [TBL] [Abstract][Full Text] [Related]
4. Treatment of Cr(VI)-containing wastewaters with exopolysaccharide-producing cyanobacteria in pilot flow through and batch systems. Colica G; Mecarozzi PC; De Philippis R Appl Microbiol Biotechnol; 2010 Aug; 87(5):1953-61. PubMed ID: 20508931 [TBL] [Abstract][Full Text] [Related]
5. Optimization of copper sorbing-desorbing cycles with confined cultures of the exopolysaccharide-producing cyanobacterium Cyanospira capsulata. Paperi R; Micheletti E; De Philippis R J Appl Microbiol; 2006 Dec; 101(6):1351-6. PubMed ID: 17105566 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents. Genç-Fuhrman H; Mikkelsen PS; Ledin A Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951 [TBL] [Abstract][Full Text] [Related]
7. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Congeevaram S; Dhanarani S; Park J; Dexilin M; Thamaraiselvi K J Hazard Mater; 2007 Jul; 146(1-2):270-7. PubMed ID: 17218056 [TBL] [Abstract][Full Text] [Related]
8. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination. Mikes J; Siglova M; Cejkova A; Masak J; Jirku V Water Sci Technol; 2005; 52(10-11):151-6. PubMed ID: 16459787 [TBL] [Abstract][Full Text] [Related]
9. Removal of some heavy metals by CKD leachate. Zaki NG; Khattab IA; Abd El-Monem NM J Hazard Mater; 2007 Aug; 147(1-2):21-7. PubMed ID: 17275181 [TBL] [Abstract][Full Text] [Related]
10. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone. Aziz HA; Adlan MN; Ariffin KS Bioresour Technol; 2008 Apr; 99(6):1578-83. PubMed ID: 17540556 [TBL] [Abstract][Full Text] [Related]
11. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Ijagbemi CO; Baek MH; Kim DS J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158 [TBL] [Abstract][Full Text] [Related]
12. Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Prigione V; Zerlottin M; Refosco D; Tigini V; Anastasi A; Varese GC Bioresour Technol; 2009 Jun; 100(11):2770-6. PubMed ID: 19211244 [TBL] [Abstract][Full Text] [Related]
13. Prediction of metal-adsorption behaviour in the remediation of water contamination using indigenous microorganisms. Fosso-Kankeu E; Mulaba-Bafubiandi AF; Mamba BB; Barnard TG J Environ Manage; 2011 Oct; 92(10):2786-93. PubMed ID: 21737198 [TBL] [Abstract][Full Text] [Related]
14. Improvement of selective removal of heavy metals in cyanobacteria by NaOH treatment. Nagase H; Inthorn D; Oda A; Nishimura J; Kajiwara Y; Park MO; Hirata K; Miyamoto K J Biosci Bioeng; 2005 Apr; 99(4):372-7. PubMed ID: 16233804 [TBL] [Abstract][Full Text] [Related]
15. Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution. Ahmad I; Ansari MI; Aqil F Indian J Exp Biol; 2006 Jan; 44(1):73-6. PubMed ID: 16430095 [TBL] [Abstract][Full Text] [Related]
16. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. Sengil IA; Ozacar M J Hazard Mater; 2009 Jul; 166(2-3):1488-94. PubMed ID: 19188018 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution. Shi T; Jia S; Chen Y; Wen Y; Du C; Guo H; Wang Z J Hazard Mater; 2009 Sep; 169(1-3):838-46. PubMed ID: 19427115 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Rehman A; Shakoori FR; Shakoori AR Bioresour Technol; 2008 Jun; 99(9):3890-5. PubMed ID: 17888657 [TBL] [Abstract][Full Text] [Related]
19. Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters. Pérez RM; Cabrera G; Gómez JM; Abalos A; Cantero D J Hazard Mater; 2010 Oct; 182(1-3):896-902. PubMed ID: 20667656 [TBL] [Abstract][Full Text] [Related]
20. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? January MC; Cutright TJ; Van Keulen H; Wei R Chemosphere; 2008 Jan; 70(3):531-7. PubMed ID: 17697697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]