These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. McGuigan KG; Méndez-Hermida F; Castro-Hermida JA; Ares-Mazás E; Kehoe SC; Boyle M; Sichel C; Fernández-Ibáñez P; Meyer BP; Ramalingham S; Meyer EA J Appl Microbiol; 2006 Aug; 101(2):453-63. PubMed ID: 16882154 [TBL] [Abstract][Full Text] [Related]
3. Comparative effectiveness of UV wavelengths for the inactivation of Cryptosporidium parvum oocysts in water. Linden KG; Shin G; Sobsey MD Water Sci Technol; 2001; 43(12):171-4. PubMed ID: 11464748 [TBL] [Abstract][Full Text] [Related]
4. Pilot-scale evaluation of UV reactors' efficacy against in vitro infectivity of Cryptosporidium parvum oocysts. Entrala E; Garin YJ; Meneceur P; Hayat M; Scherpereel G; Savin C; Féliers C; Derouin F FEMS Immunol Med Microbiol; 2007 Dec; 51(3):555-61. PubMed ID: 17941833 [TBL] [Abstract][Full Text] [Related]
5. Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions. Gómez-Couso H; Fontán-Saínz M; Sichel C; Fernández-Ibáñez P; Ares-Mazás E Trop Med Int Health; 2009 Jun; 14(6):620-7. PubMed ID: 19570059 [TBL] [Abstract][Full Text] [Related]
6. Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2. Méndez-Hermida F; Ares-Mazás E; McGuigan KG; Boyle M; Sichel C; Fernández-Ibáñez P J Photochem Photobiol B; 2007 Sep; 88(2-3):105-11. PubMed ID: 17624798 [TBL] [Abstract][Full Text] [Related]
7. Effect of batch-process solar disinfection on survival of Cryptosporidium parvum oocysts in drinking water. Méndez-Hermida F; Castro-Hermida JA; Ares-Mazás E; Kehoe SC; McGuigan KG Appl Environ Microbiol; 2005 Mar; 71(3):1653-4. PubMed ID: 15746372 [TBL] [Abstract][Full Text] [Related]
8. Excystation of Cryptosporidium parvum at temperatures that are reached during solar water disinfection. Gómez-Couso H; Fontán-Sainz M; Fernández-Alonso J; Ares-Mazás E Parasitology; 2009 Apr; 136(4):393-9. PubMed ID: 19195413 [TBL] [Abstract][Full Text] [Related]
9. Die-off of Cryptosporidium parvum in soil and wastewater effluents. Nasser AM; Tweto E; Nitzan Y J Appl Microbiol; 2007 Jan; 102(1):169-76. PubMed ID: 17184332 [TBL] [Abstract][Full Text] [Related]
10. Artificial UV-B and solar radiation reduce in vitro infectivity of the human pathogen Cryptosporidium parvum. Connelly SJ; Wolyniak EA; Williamson CE; Jellison KL Environ Sci Technol; 2007 Oct; 41(20):7101-6. PubMed ID: 17993154 [TBL] [Abstract][Full Text] [Related]
11. Effect of the radiation intensity, water turbidity and exposure time on the survival of Cryptosporidium during simulated solar disinfection of drinking water. Gómez-Couso H; Fontán-Sainz M; McGuigan KG; Ares-Mazás E Acta Trop; 2009 Oct; 112(1):43-8. PubMed ID: 19539587 [TBL] [Abstract][Full Text] [Related]
12. Investigations of the relationship between use of in vitro cell culture-quantitative PCR and a mouse-based bioassay for evaluating critical factors affecting the disinfection performance of pulsed UV light for treating Cryptosporidium parvum oocysts in saline. Garvey M; Farrell H; Cormican M; Rowan N J Microbiol Methods; 2010 Mar; 80(3):267-73. PubMed ID: 20096310 [TBL] [Abstract][Full Text] [Related]
13. The response of Cryptosporidium parvum to UV light. Rochelle PA; Upton SJ; Montelone BA; Woods K Trends Parasitol; 2005 Feb; 21(2):81-7. PubMed ID: 15664531 [TBL] [Abstract][Full Text] [Related]
14. Cryptosporidium inactivation by low-pressure UV in a water disinfection device. Drescher AC; Greene DM; Gadgil AJ J Environ Health; 2001 Oct; 64(3):31-5. PubMed ID: 11605325 [TBL] [Abstract][Full Text] [Related]
15. Cryptosporidium parvum oocyst inactivation in field soil and its relation to soil characteristics: analyses using the geographic information systems. Kato S; Jenkins M; Fogarty E; Bowman D Sci Total Environ; 2004 Apr; 321(1-3):47-58. PubMed ID: 15050384 [TBL] [Abstract][Full Text] [Related]
16. Assessing UV reactor performance for treatment of finished water. Bukhari Z; LeChevallier M Water Sci Technol; 2003; 47(3):179-84. PubMed ID: 12639026 [TBL] [Abstract][Full Text] [Related]
17. Effect of various environmental factors on the viability of Cryptosporidium parvum oocysts. Reinoso R; Becares E; Smith HV J Appl Microbiol; 2008 Apr; 104(4):980-6. PubMed ID: 17973913 [TBL] [Abstract][Full Text] [Related]
18. Detection of UV-induced thymine dimers in individual Cryptosporidium parvum and Cryptosporidium hominis oocysts by immunofluorescence microscopy. Al-Adhami BH; Nichols RA; Kusel JR; O'Grady J; Smith HV Appl Environ Microbiol; 2007 Feb; 73(3):947-55. PubMed ID: 17012589 [TBL] [Abstract][Full Text] [Related]
19. Inactivation and potential repair of Cryptosporidium parvum following low- and medium-pressure ultraviolet irradiation. Zimmer JL; Slawson RM; Huck PM Water Res; 2003 Aug; 37(14):3517-23. PubMed ID: 12834745 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of water treatment plant UV reactor efficiency against Cryptosporidium parvum oocyst infectivity in immunocompetent suckling mice. Le Goff L; Khaldi S; Favennec L; Nauleau F; Meneceur P; Perot J; Ballet JJ; Gargala G J Appl Microbiol; 2010 Mar; 108(3):1060-1065. PubMed ID: 19761461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]