These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 18248740)

  • 1. An event-related fMRI investigation of voice-onset time discrimination.
    Hutchison ER; Blumstein SE; Myers EB
    Neuroimage; 2008 Mar; 40(1):342-52. PubMed ID: 18248740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The perception of voice onset time: an fMRI investigation of phonetic category structure.
    Blumstein SE; Myers EB; Rissman J
    J Cogn Neurosci; 2005 Sep; 17(9):1353-66. PubMed ID: 16197689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex.
    Steinschneider M; Volkov IO; Noh MD; Garell PC; Howard MA
    J Neurophysiol; 1999 Nov; 82(5):2346-57. PubMed ID: 10561410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Objective phonological and subjective perceptual characteristics of syllables modulate spatiotemporal patterns of superior temporal gyrus activity.
    Frye RE; Fisher JM; Witzel T; Ahlfors SP; Swank P; Liederman J; Halgren E
    Neuroimage; 2008 May; 40(4):1888-901. PubMed ID: 18356082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEG correlates of categorical perception of a voice onset time continuum in humans.
    Simos PG; Diehl RL; Breier JI; Molis MR; Zouridakis G; Papanicolaou AC
    Brain Res Cogn Brain Res; 1998 Oct; 7(2):215-9. PubMed ID: 9774735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic investigation of the functional neuroanatomy of auditory and visual phonological processing.
    Burton MW; Locasto PC; Krebs-Noble D; Gullapalli RP
    Neuroimage; 2005 Jul; 26(3):647-61. PubMed ID: 15955475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different brain circuits underlie motor and perceptual representations of temporal intervals.
    Bueti D; Walsh V; Frith C; Rees G
    J Cogn Neurosci; 2008 Feb; 20(2):204-14. PubMed ID: 18275329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neural basis of temporal auditory discrimination.
    Pastor MA; Macaluso E; Day BL; Frackowiak RS
    Neuroimage; 2006 Apr; 30(2):512-20. PubMed ID: 16289998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional magnetic resonance imaging of visual object construction and shape discrimination : relations among task, hemispheric lateralization, and gender.
    Georgopoulos AP; Whang K; Georgopoulos MA; Tagaris GA; Amirikian B; Richter W; Kim SG; Uğurbil K
    J Cogn Neurosci; 2001 Jan; 13(1):72-89. PubMed ID: 11224910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Right-hemisphere responses from preschool children to temporal cues to speech and nonspeech materials: electrophysiological correlates.
    Molfese DL; Molfese VJ
    Brain Lang; 1988 Mar; 33(2):245-59. PubMed ID: 3359170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training to use voice onset time as a cue to talker identification induces a left-ear/right-hemisphere processing advantage.
    Francis AL; Driscoll C
    Brain Lang; 2006 Sep; 98(3):310-8. PubMed ID: 16828153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the right anterior insular cortex in the right hemisphere preponderance of stimulus-preceding negativity (SPN): an fMRI study.
    Kotani Y; Ohgami Y; Kuramoto Y; Tsukamoto T; Inoue Y; Aihara Y
    Neurosci Lett; 2009 Jan; 450(2):75-9. PubMed ID: 19028549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemispheric asymmetries in the transition from action preparation to execution.
    Sulpizio V; Lucci G; Berchicci M; Galati G; Pitzalis S; Di Russo F
    Neuroimage; 2017 Mar; 148():390-402. PubMed ID: 28069542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sequential comparison on active processing of sound duration.
    Angenstein N; Brechmann A
    Hum Brain Mapp; 2017 Sep; 38(9):4459-4469. PubMed ID: 28580585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-modal interactions during perception of audiovisual speech and nonspeech signals: an fMRI study.
    Hertrich I; Dietrich S; Ackermann H
    J Cogn Neurosci; 2011 Jan; 23(1):221-37. PubMed ID: 20044895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Underlying mechanism for categorical perception: tone-onset time and voice-onset time evidence of Hebrew voicing.
    Kishon-Rabin L; Rotshtein S; Taitelbaum R
    J Basic Clin Physiol Pharmacol; 2002; 13(2):117-34. PubMed ID: 16411426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of spectral and durational properties on hemispheric asymmetries in vowel perception.
    Britton B; Blumstein SE; Myers EB; Grindrod C
    Neuropsychologia; 2009 Mar; 47(4):1096-106. PubMed ID: 19162052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Song and speech: brain regions involved with perception and covert production.
    Callan DE; Tsytsarev V; Hanakawa T; Callan AM; Katsuhara M; Fukuyama H; Turner R
    Neuroimage; 2006 Jul; 31(3):1327-42. PubMed ID: 16546406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of number of perceptual categories on identification functions of non-speech stimuli and the relationship to categorization of Hebrew voicing.
    Kishon-Rabin L; Kochva R; Kigel S; Rotshtein S; Roth DA
    J Basic Clin Physiol Pharmacol; 2005; 16(2-3):173-87. PubMed ID: 16285468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional neuroanatomy of segmenting speech and nonspeech.
    Burton MW; Small SL
    Cortex; 2006 May; 42(4):644-51. PubMed ID: 16881272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.