These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18248801)

  • 61. Self-assembled polypeptide-block-poly(vinylpyrrolidone) as prospective drug-delivery systems.
    Wang L; Zeng R; Li C; Qiao R
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):284-92. PubMed ID: 19717289
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A bioactive sol-gel glass implant for in vivo gentamicin release. Experimental model in Rabbit.
    Meseguer-Olmo L; Ros-Nicolás M; Vicente-Ortega V; Alcaraz-Baños M; Clavel-Sainz M; Arcos D; Ragel CV; Vallet-Regí M; Meseguer-Ortiz C
    J Orthop Res; 2006 Mar; 24(3):454-60. PubMed ID: 16450408
    [TBL] [Abstract][Full Text] [Related]  

  • 63. pH-responsive nanoparticles for cancer drug delivery.
    Shen Y; Tang H; Radosz M; Van Kirk E; Murdoch WJ
    Methods Mol Biol; 2008; 437():183-216. PubMed ID: 18369970
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells.
    Sahu A; Bora U; Kasoju N; Goswami P
    Acta Biomater; 2008 Nov; 4(6):1752-61. PubMed ID: 18524701
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate.
    Pandey H; Parashar V; Parashar R; Prakash R; Ramteke PW; Pandey AC
    Nanoscale; 2011 Oct; 3(10):4104-8. PubMed ID: 21909583
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Biodegradable gentamicin delivery systems for parenteral use for the treatment of intracellular bacterial infections.
    Gamazo C; Prior S; Concepción Lecároz M; Vitas AI; Campanero MA; Pérez G; Gonzalez D; Blanco-Prieto MJ
    Expert Opin Drug Deliv; 2007 Nov; 4(6):677-88. PubMed ID: 17970669
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of a polymeric patch impregnated with naproxen as a model of transdermal sustained release system.
    Argemí A; Ellis JL; Saurina J; Tomasko DL
    J Pharm Sci; 2011 Mar; 100(3):992-1000. PubMed ID: 20848657
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Controlled release of an antibiotic, gentamicin sulphate, from gravity spun polycaprolactone fibers.
    Chang HI; Lau YC; Yan C; Coombes AG
    J Biomed Mater Res A; 2008 Jan; 84(1):230-7. PubMed ID: 17607742
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drugs.
    Vemula PK; Li J; John G
    J Am Chem Soc; 2006 Jul; 128(27):8932-8. PubMed ID: 16819889
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Loading and delivery of sertraline using inorganic micro and mesoporous materials.
    Nunes CD; Vaz PD; Fernandes AC; Ferreira P; Romão CC; Calhorda MJ
    Eur J Pharm Biopharm; 2007 Jun; 66(3):357-65. PubMed ID: 17240126
    [TBL] [Abstract][Full Text] [Related]  

  • 71. pH-Triggered adsorption-desorption of enzyme in mesoporous host to act on macrosubstrate.
    Lu S; An Z; Li J; He J
    J Phys Chem B; 2011 Nov; 115(46):13695-700. PubMed ID: 21991923
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Establishing Structure Property Relationship in Drug Partitioning into and Release from Niosomes: Physical Chemistry Insights with Anti-Inflammatory Drugs.
    Dasgupta M; Kishore N
    J Phys Chem B; 2017 Sep; 121(38):8902-8918. PubMed ID: 28858506
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Polymer composites containing gated mesoporous materials for on-command controlled release.
    Acosta C; Pérez-Esteve E; Fuenmayor CA; Benedetti S; Cosio MS; Soto J; Sancenón F; Mannino S; Barat J; Marcos MD; Martínez-Máñez R
    ACS Appl Mater Interfaces; 2014 May; 6(9):6453-60. PubMed ID: 24707920
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electrothermally activated microchips for implantable drug delivery and biosensing.
    Maloney JM; Uhland SA; Polito BF; Sheppard NF; Pelta CM; Santini JT
    J Control Release; 2005 Dec; 109(1-3):244-55. PubMed ID: 16278032
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Drug delivery devices based on mesoporous silicate.
    Cavallaro G; Pierro P; Palumbo FS; Testa F; Pasqua L; Aiello R
    Drug Deliv; 2004; 11(1):41-6. PubMed ID: 15168790
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dual-Functional Dendritic Mesoporous Bioactive Glass Nanospheres for Calcium Influx-Mediated Specific Tumor Suppression and Controlled Drug Delivery in Vivo.
    Sui B; Liu X; Sun J
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23548-23559. PubMed ID: 29947213
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Addition of hydrogen bond donating excipients to oil solution: effect on in vitro drug release rate and viscosity.
    Larsen DB; Fredholt K; Larsen C
    Eur J Pharm Sci; 2001 Jul; 13(4):403-10. PubMed ID: 11408155
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Preparation, bioactivity, and drug release of hierarchical nanoporous bioactive glass ultrathin fibers.
    Hong Y; Chen X; Jing X; Fan H; Guo B; Gu Z; Zhang X
    Adv Mater; 2010 Feb; 22(6):754-8. PubMed ID: 20217784
    [No Abstract]   [Full Text] [Related]  

  • 79. The relationship between structures and in vitro properties of a polyanhydride implant containing gentamicin sulfate.
    Deng JS; Li L; Tian Y; Meisters M; Chang HC; Stephens D; Chen S; Robinson D
    Pharm Dev Technol; 2001 Nov; 6(4):541-9. PubMed ID: 11775955
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A protein nanocarrier from charge-conversion polymer in response to endosomal pH.
    Lee Y; Fukushima S; Bae Y; Hiki S; Ishii T; Kataoka K
    J Am Chem Soc; 2007 May; 129(17):5362-3. PubMed ID: 17408272
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.