These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 18248983)
1. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Jo JH; Lee DS; Park D; Park JM Bioresour Technol; 2008 Sep; 99(14):6666-72. PubMed ID: 18248983 [TBL] [Abstract][Full Text] [Related]
2. Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: effects of the glucose concentration and hydraulic retention time. Mitchell RJ; Kim JS; Jeon BS; Sang BI Bioresour Technol; 2009 Nov; 100(21):5352-5. PubMed ID: 19545998 [TBL] [Abstract][Full Text] [Related]
3. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152 [TBL] [Abstract][Full Text] [Related]
4. Production of butyric acid from glucose and xylose with immobilized cells of Clostridium tyrobutyricum in a fibrous-bed bioreactor. Jiang L; Wang J; Liang S; Wang X; Cen P; Xu Z Appl Biochem Biotechnol; 2010 Jan; 160(2):350-9. PubMed ID: 18651247 [TBL] [Abstract][Full Text] [Related]
5. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Jo JH; Lee DS; Park JM Bioresour Technol; 2008 Nov; 99(17):8485-91. PubMed ID: 18485698 [TBL] [Abstract][Full Text] [Related]
6. Effect of initial glucose concentrations on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Jo JH; Lee DS; Kim J; Park JM J Microbiol Biotechnol; 2009 Mar; 19(3):291-8. PubMed ID: 19349755 [TBL] [Abstract][Full Text] [Related]
7. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate. Hung CH; Lee KS; Cheng LH; Huang YH; Lin PJ; Chang JS Appl Microbiol Biotechnol; 2007 Jun; 75(3):693-701. PubMed ID: 17440720 [TBL] [Abstract][Full Text] [Related]
8. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Jiang L; Wang J; Liang S; Wang X; Cen P; Xu Z Bioresour Technol; 2009 Jul; 100(13):3403-9. PubMed ID: 19297150 [TBL] [Abstract][Full Text] [Related]
9. Metabolic flux network analysis of fermentative hydrogen production: using Clostridium tyrobutyricum as an example. Cheng HH; Whang LM; Lin CA; Liu IC; Wu CW Bioresour Technol; 2013 Aug; 141():233-9. PubMed ID: 23659760 [TBL] [Abstract][Full Text] [Related]
10. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration. Kim SH; Han SK; Shin HS Water Sci Technol; 2005; 52(10-11):23-9. PubMed ID: 16459773 [TBL] [Abstract][Full Text] [Related]
11. Biological hydrogen production using a membrane bioreactor. Oh SE; Iyer P; Bruns MA; Logan BE Biotechnol Bioeng; 2004 Jul; 87(1):119-27. PubMed ID: 15211496 [TBL] [Abstract][Full Text] [Related]
12. Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Huang J; Cai J; Wang J; Zhu X; Huang L; Yang ST; Xu Z Bioresour Technol; 2011 Feb; 102(4):3923-6. PubMed ID: 21169015 [TBL] [Abstract][Full Text] [Related]
13. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Liu X; Zhu Y; Yang ST Biotechnol Prog; 2006; 22(5):1265-75. PubMed ID: 17022663 [TBL] [Abstract][Full Text] [Related]
14. Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition. Whang LM; Lin CA; Liu IC; Wu CW; Cheng HH Bioresour Technol; 2011 Sep; 102(18):8378-83. PubMed ID: 21511461 [TBL] [Abstract][Full Text] [Related]
15. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas. Koskinen PE; Beck SR; Orlygsson J; Puhakka JA Biotechnol Bioeng; 2008 Nov; 101(4):679-90. PubMed ID: 18500766 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Lee KS; Wu JF; Lo YS; Lo YC; Lin PJ; Chang JS Biotechnol Bioeng; 2004 Sep; 87(5):648-57. PubMed ID: 15352063 [TBL] [Abstract][Full Text] [Related]
17. Fermentative hydrogen production from molasses wastewater in a continuous mixed immobilized sludge reactor. Han W; Wang B; Zhou Y; Wang DX; Wang Y; Yue LR; Li YF; Ren NQ Bioresour Technol; 2012 Apr; 110():219-23. PubMed ID: 22326329 [TBL] [Abstract][Full Text] [Related]
18. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Lo YC; Chen WM; Hung CH; Chen SD; Chang JS Water Res; 2008 Feb; 42(4-5):827-42. PubMed ID: 17889245 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Koutrouli EC; Kalfas H; Gavala HN; Skiadas IV; Stamatelatou K; Lyberatos G Bioresour Technol; 2009 Aug; 100(15):3718-23. PubMed ID: 19246194 [TBL] [Abstract][Full Text] [Related]
20. Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor. de Amorim EL; Sader LT; Silva EL Appl Biochem Biotechnol; 2012 Mar; 166(5):1248-63. PubMed ID: 22212393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]