These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1824912)

  • 1. Control of reversible intracellular transfer of reducing potential.
    Kunz WS; Davis EJ
    Arch Biochem Biophys; 1991 Jan; 284(1):40-6. PubMed ID: 1824912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle.
    Bremer J; Davis EJ
    Biochim Biophys Acta; 1975 Mar; 376(3):387-97. PubMed ID: 164904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of cellular redox potential as measured in a steady-state, cell-free system.
    Burat MK; Burat T; Davis-Van Thienen WI; Davis EJ
    Arch Biochem Biophys; 1984 Nov; 235(1):150-8. PubMed ID: 6238571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of pyruvate, malate, citrate, and cytosolic reducing equivalents by AS-30D hepatoma mitochondria.
    Dietzen DJ; Davis EJ
    Arch Biochem Biophys; 1993 Aug; 305(1):91-102. PubMed ID: 8342959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism.
    Alshawi A; Agius L
    J Biol Chem; 2019 Feb; 294(8):2839-2853. PubMed ID: 30591586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hepatic mitochondrial respiration and transport of reducing equivalents in rats fed an energy dense diet.
    Iossa S; Mollica MP; Lionetti L; Barletta A; Liverini G
    Int J Obes Relat Metab Disord; 1995 Aug; 19(8):539-43. PubMed ID: 7489023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of octanoate on the rate of oxidative phosphorylation and the associated extramitochondrial ATP/ADP ratios studied with isolated rat liver mitochondria oxidizing pyruvate.
    Schönfeld P; Petzold D; Kunz W
    Biomed Biochim Acta; 1984; 43(10):1055-65. PubMed ID: 6525184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the malate-aspartate shuttle on oxidative metabolism in synaptosomes.
    Cheeseman AJ; Clark JB
    J Neurochem; 1988 May; 50(5):1559-65. PubMed ID: 3361310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate.
    Nicklas WJ; Clark JB; Williamson JR
    Biochem J; 1971 Jun; 123(1):83-95. PubMed ID: 5128666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octanoate affects 2,4-dinitrophenol uncoupling in intact isolated rat hepatocytes.
    Sibille B; Keriel C; Fontaine E; Catelloni F; Rigoulet M; Leverve XM
    Eur J Biochem; 1995 Jul; 231(2):498-502. PubMed ID: 7635161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate.
    Siess EA; Brocks DG; Lattke HK; Wieland OH
    Biochem J; 1977 Aug; 166(2):225-35. PubMed ID: 199159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo and in vitro adenosine stimulation of ethanol oxidation by hepatocytes, and the role of the malate-aspartate shuttle.
    Hernández-Muñoz R; Díaz-Muñoz M; Chagoya de Sánchez V
    Biochim Biophys Acta; 1987 Sep; 930(2):254-63. PubMed ID: 2887212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states.
    Jong YS; Davis EJ
    Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of pyruvate carboxylase activity by the pyridine-nucleotide redox state in mitochondria from rat liver.
    Siess EA; Banik E; Neugebauer S
    Eur J Biochem; 1988 Apr; 173(2):369-74. PubMed ID: 3360015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid oxidation of NADPH via the reconstituted malate-aspartate shuttle in systems containing mitochondrial and soluble fractions of rat liver: implications for ethanol metabolism.
    Dawson AG
    Biochem Pharmacol; 1982 Sep; 31(17):2733-8. PubMed ID: 7138569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium and 2-oxoglutarate-mediated control of aspartate formation by rat heart mitochondria.
    Scaduto RC
    Eur J Biochem; 1994 Aug; 223(3):751-8. PubMed ID: 7914488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gluconeogenesis in the kidney cortex. Effects of D-malate and amino-oxyacetate.
    Rognstad R; Katz J
    Biochem J; 1970 Feb; 116(3):483-91. PubMed ID: 5435692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.