These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18249544)

  • 1. Lead identification of acetylcholinesterase inhibitors-histamine H3 receptor antagonists from molecular modeling.
    Bembenek SD; Keith JM; Letavic MA; Apodaca R; Barbier AJ; Dvorak L; Aluisio L; Miller KL; Lovenberg TW; Carruthers NI
    Bioorg Med Chem; 2008 Mar; 16(6):2968-73. PubMed ID: 18249544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Searching for the Multi-Target-Directed Ligands against Alzheimer's disease: discovery of quinoxaline-based hybrid compounds with AChE, H₃R and BACE 1 inhibitory activities.
    Huang W; Tang L; Shi Y; Huang S; Xu L; Sheng R; Wu P; Li J; Zhou N; Hu Y
    Bioorg Med Chem; 2011 Dec; 19(23):7158-67. PubMed ID: 22019465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-acting drugs: an in vitro study of nonimidazole histamine H3 receptor antagonists combining anticholinesterase activity.
    Incerti M; Flammini L; Saccani F; Morini G; Comini M; Coruzzi M; Barocelli E; Ballabeni V; Bertoni S
    ChemMedChem; 2010 Jul; 5(7):1143-9. PubMed ID: 20512794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Abeta1-42 aggregation for Alzheimer's disease therapeutics.
    Kwon YE; Park JY; No KT; Shin JH; Lee SK; Eun JS; Yang JH; Shin TY; Kim DK; Chae BS; Leem JY; Kim KH
    Bioorg Med Chem; 2007 Oct; 15(20):6596-607. PubMed ID: 17681794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists.
    Darras FH; Pockes S; Huang G; Wehle S; Strasser A; Wittmann HJ; Nimczick M; Sotriffer CA; Decker M
    ACS Chem Neurosci; 2014 Mar; 5(3):225-42. PubMed ID: 24422467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular modeling, docking and ADMET studies applied to the design of a novel hybrid for treatment of Alzheimer's disease.
    da Silva CH; Campo VL; Carvalho I; Taft CA
    J Mol Graph Model; 2006 Oct; 25(2):169-75. PubMed ID: 16413803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benzophenone-based derivatives: a novel series of potent and selective dual inhibitors of acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation.
    Belluti F; Bartolini M; Bottegoni G; Bisi A; Cavalli A; Andrisano V; Rampa A
    Eur J Med Chem; 2011 May; 46(5):1682-93. PubMed ID: 21397996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propidium-based polyamine ligands as potent inhibitors of acetylcholinesterase and acetylcholinesterase-induced amyloid-beta aggregation.
    Bolognesi ML; Andrisano V; Bartolini M; Banzi R; Melchiorre C
    J Med Chem; 2005 Jan; 48(1):24-7. PubMed ID: 15633997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of the pharmacophore model of acetylcholinesterase inhibitor.
    Zhu Y; Tong XY; Zhao Y; Chen H; Jiang FC
    Yao Xue Xue Bao; 2008 Mar; 43(3):267-76. PubMed ID: 18630262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis of novel drugs designed for use as acetylcholinesterase inhibitors and histamine H3 receptor antagonists for Alzheimer's disease by docking, scoring and de novo evolution.
    Chen PY; Tsai CT; Ou CY; Hsu WT; Jhuo MD; Wu CH; Shih TC; Cheng TH; Chung JG
    Mol Med Rep; 2012 Apr; 5(4):1043-8. PubMed ID: 22267207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico design and search for acetylcholinesterase inhibitors in Alzheimer's disease with a suitable pharmacokinetic profile and low toxicity.
    da Silva VB; de Andrade P; Kawano DF; Morais PA; de Almeida JR; Carvalho I; Taft CA; da Silva CH
    Future Med Chem; 2011 Jun; 3(8):947-60. PubMed ID: 21707398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active site directed docking studies: synthesis and pharmacological evaluation of cis-2,6-dimethyl piperidine sulfonamides as inhibitors of acetylcholinesterase.
    Girisha HR; Narendra Sharath Chandra JN; Boppana S; Malviya M; Sadashiva CT; Rangappa KS
    Eur J Med Chem; 2009 Oct; 44(10):4057-62. PubMed ID: 19493592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and beta-secretase.
    Zhu Y; Xiao K; Ma L; Xiong B; Fu Y; Yu H; Wang W; Wang X; Hu D; Peng H; Li J; Gong Q; Chai Q; Tang X; Zhang H; Li J; Shen J
    Bioorg Med Chem; 2009 Feb; 17(4):1600-13. PubMed ID: 19162488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-(4-[[Benzyl(methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation: a dual function lead for Alzheimer's disease therapy.
    Piazzi L; Rampa A; Bisi A; Gobbi S; Belluti F; Cavalli A; Bartolini M; Andrisano V; Valenti P; Recanatini M
    J Med Chem; 2003 Jun; 46(12):2279-82. PubMed ID: 12773032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer's disease.
    Muñoz-Ruiz P; Rubio L; García-Palomero E; Dorronsoro I; del Monte-Millán M; Valenzuela R; Usán P; de Austria C; Bartolini M; Andrisano V; Bidon-Chanal A; Orozco M; Luque FJ; Medina M; Martínez A
    J Med Chem; 2005 Nov; 48(23):7223-33. PubMed ID: 16279781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Therapy of Alzheimer disease].
    Kovács T
    Neuropsychopharmacol Hung; 2009 Mar; 11(1):27-33. PubMed ID: 19731816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a histamine H3 receptor model through structure-activity relationships for classical H3 antagonists.
    Lorenzi S; Mor M; Bordi F; Rivara S; Rivara M; Morini G; Bertoni S; Ballabeni V; Barocelli E; Plazzi PV
    Bioorg Med Chem; 2005 Oct; 13(19):5647-57. PubMed ID: 16085419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques.
    Gupta S; Fallarero A; Järvinen P; Karlsson D; Johnson MS; Vuorela PM; Mohan CG
    Bioorg Med Chem Lett; 2011 Feb; 21(4):1105-12. PubMed ID: 21273074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and beta-amyloid-directed anti-Alzheimer compounds.
    Camps P; Formosa X; Galdeano C; Muñoz-Torrero D; Ramírez L; Gómez E; Isambert N; Lavilla R; Badia A; Clos MV; Bartolini M; Mancini F; Andrisano V; Arce MP; Rodríguez-Franco MI; Huertas O; Dafni T; Luque FJ
    J Med Chem; 2009 Sep; 52(17):5365-79. PubMed ID: 19663388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of acetylcholinesterase peripheral anionic site ligands through computational refinement of a directed library.
    Dickerson TJ; Beuscher AE; Rogers CJ; Hixon MS; Yamamoto N; Xu Y; Olson AJ; Janda KD
    Biochemistry; 2005 Nov; 44(45):14845-53. PubMed ID: 16274232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.