These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. On relative convergence properties of principal component analysis algorithms. Chatterjee C; Roychowdhury VP; Chong EP IEEE Trans Neural Netw; 1998; 9(2):319-29. PubMed ID: 18252455 [TBL] [Abstract][Full Text] [Related]
5. Performance surfaces of a single-layer perceptron. Shynk JJ IEEE Trans Neural Netw; 1990; 1(3):268-74. PubMed ID: 18282846 [TBL] [Abstract][Full Text] [Related]
6. Information geometric algorithm for estimating switching probabilities in space-varying HMM. Nascimento JC; BarĂ£o M; Marques JS; Lemos JM IEEE Trans Image Process; 2014 Dec; 23(12):5263-73. PubMed ID: 25330491 [TBL] [Abstract][Full Text] [Related]
7. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models. Yuan G; Duan X; Liu W; Wang X; Cui Z; Sheng Z PLoS One; 2015; 10(10):e0140071. PubMed ID: 26502409 [TBL] [Abstract][Full Text] [Related]
8. Improving the convergence of iterative filtered backprojection algorithms. Lalush DS; Tsui BM Med Phys; 1994 Aug; 21(8):1283-6. PubMed ID: 7799872 [TBL] [Abstract][Full Text] [Related]
9. Fast Automatic Step Size Estimation for Gradient Descent Optimization of Image Registration. Qiao Y; van Lew B; Lelieveldt BP; Staring M IEEE Trans Med Imaging; 2016 Feb; 35(2):391-403. PubMed ID: 26353367 [TBL] [Abstract][Full Text] [Related]
10. Parallelizable Bayesian tomography algorithms with rapid, guaranteed convergence. Zheng J; Saquib SS; Sauer K; Bouman CA IEEE Trans Image Process; 2000; 9(10):1745-59. PubMed ID: 18262913 [TBL] [Abstract][Full Text] [Related]
11. Adaptive Optical Closed-Loop Control Based on the Single-Dimensional Perturbation Descent Algorithm. Chen B; Zhou Y; Li Z; Jia J; Zhang Y Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177573 [TBL] [Abstract][Full Text] [Related]
13. From Multitask Gradient Descent to Gradient-Free Evolutionary Multitasking: A Proof of Faster Convergence. Bai L; Lin W; Gupta A; Ong YS IEEE Trans Cybern; 2022 Aug; 52(8):8561-8573. PubMed ID: 33705329 [TBL] [Abstract][Full Text] [Related]
14. A symmetric linear neural network that learns principal components and their variances. Peper F; Noda H IEEE Trans Neural Netw; 1996; 7(4):1042-7. PubMed ID: 18263500 [TBL] [Abstract][Full Text] [Related]
15. Riemannian Newton and trust-region algorithms for analytic rotation in exploratory factor analysis. Liu Y Br J Math Stat Psychol; 2021 Feb; 74(1):139-163. PubMed ID: 32715469 [TBL] [Abstract][Full Text] [Related]
16. Painless Stochastic Conjugate Gradient for Large-Scale Machine Learning. Yang Z IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):14645-14658. PubMed ID: 37285250 [TBL] [Abstract][Full Text] [Related]
18. Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method. Bhaya A; Kaszkurewicz E Neural Netw; 2004 Jan; 17(1):65-71. PubMed ID: 14690708 [TBL] [Abstract][Full Text] [Related]
19. Energy function for the one-unit Oja algorithm. Zhang Q; Leung YW IEEE Trans Neural Netw; 1995; 6(5):1291-3. PubMed ID: 18263421 [TBL] [Abstract][Full Text] [Related]
20. Descent algorithms on oblique manifold for source-adaptive ICA contrast. Selvan SE; Amato U; Gallivan KA; Qi C; Carfora MF; Larobina M; Alfano B IEEE Trans Neural Netw Learn Syst; 2012 Dec; 23(12):1930-47. PubMed ID: 24808148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]