These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 18249794)

  • 1. Data strip mining for the virtual design of pharmaceuticals with neural networks.
    Kewley RH; Embrechts MJ; Breneman C
    IEEE Trans Neural Netw; 2000; 11(3):668-79. PubMed ID: 18249794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relating formulation variables to in vitro dissolution using an artificial neural network.
    Ebube NK; McCall T; Chen Y; Meyer MC
    Pharm Dev Technol; 1997 Aug; 2(3):225-32. PubMed ID: 9552450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle.
    Ehret A; Hochstuhl D; Gianola D; Thaller G
    Genet Sel Evol; 2015 Mar; 47(1):22. PubMed ID: 25886037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of an artificial neural network to predict head injury outcome.
    Rughani AI; Dumont TM; Lu Z; Bongard J; Horgan MA; Penar PL; Tranmer BI
    J Neurosurg; 2010 Sep; 113(3):585-90. PubMed ID: 20020844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of an artificial neural network model to predict delayed decrease of serum creatinine in pediatric patients after kidney transplantation.
    Santori G; Fontana I; Valente U
    Transplant Proc; 2007; 39(6):1813-9. PubMed ID: 17692620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the graft survival for heart-lung transplantation patients: an integrated data mining methodology.
    Oztekin A; Delen D; Kong ZJ
    Int J Med Inform; 2009 Dec; 78(12):e84-96. PubMed ID: 19497782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global sensitivity analysis approach for input selection and system identification purposes--a new framework for feedforward neural networks.
    Fock E
    IEEE Trans Neural Netw Learn Syst; 2014 Aug; 25(8):1484-95. PubMed ID: 25050946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entering the black box of neural networks.
    Heckerling PS; Gerber BS; Tape TG; Wigton RS
    Methods Inf Med; 2003; 42(3):287-96. PubMed ID: 12874664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data mining of inputs: analysing magnitude and functional measures.
    Gedeon TD
    Int J Neural Syst; 1997 Apr; 8(2):209-18. PubMed ID: 9327276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving artificial neural network model predictions of daily average PM10 concentrations by applying principle component analysis and implementing seasonal models.
    Taşpınar F
    J Air Waste Manag Assoc; 2015 Jul; 65(7):800-9. PubMed ID: 26079553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of cytotoxicity data (CC(50)) of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives by artificial neural network trained with Levenberg-Marquardt algorithm.
    Arab Chamjangali M; Beglari M; Bagherian G
    J Mol Graph Model; 2007 Jul; 26(1):360-7. PubMed ID: 17350867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recursive Random Forests Enable Better Predictive Performance and Model Interpretation than Variable Selection by LASSO.
    Zhu XW; Xin YJ; Ge HL
    J Chem Inf Model; 2015 Apr; 55(4):736-46. PubMed ID: 25746224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of performance of mathematical predictive methods for medical diagnosis: identifying acute cardiac ischemia among emergency department patients.
    Selker HP; Griffith JL; Patil S; Long WJ; D'Agostino RB
    J Investig Med; 1995 Oct; 43(5):468-76. PubMed ID: 8528758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks.
    D'Archivio AA; Incani A; Ruggieri F
    J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural networks for predicting failure to survive following in-hospital cardiopulmonary resuscitation.
    Ebell MH
    J Fam Pract; 1993 Mar; 36(3):297-303. PubMed ID: 8454976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applying data mining for the analysis of breast cancer data.
    Liou DM; Chang WP
    Methods Mol Biol; 2015; 1246():175-89. PubMed ID: 25417087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ANN-DT: an algorithm for extraction of decision trees from artificial neural networks.
    Schmitz GJ; Aldrich C; Gouws FS
    IEEE Trans Neural Netw; 1999; 10(6):1392-401. PubMed ID: 18252640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of 2-dimensional array patterns: assembling many small neural networks is better than using a large one.
    Chen L; Xue W; Tokuda N
    Neural Netw; 2010 Aug; 23(6):770-81. PubMed ID: 20456916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.