These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 18249809)
1. A constructive algorithm to solve "convex recursive deletion" (CoRD) classification problems via two-layer perceptron networks. Cabrelli C; Molter U; Shonkwiler R IEEE Trans Neural Netw; 2000; 11(3):811-6. PubMed ID: 18249809 [TBL] [Abstract][Full Text] [Related]
2. Separating the vertices of N-cubes by hyperplanes and its application to artificial neural networks. Shonkwiler R IEEE Trans Neural Netw; 1993; 4(2):343-7. PubMed ID: 18267733 [TBL] [Abstract][Full Text] [Related]
3. Classification ability of single hidden layer feedforward neural networks. Huang GB; Chen YQ; Babri HA IEEE Trans Neural Netw; 2000; 11(3):799-801. PubMed ID: 18249806 [TBL] [Abstract][Full Text] [Related]
4. CARVE--a constructive algorithm for real-valued examples. Young S; Downs T IEEE Trans Neural Netw; 1998; 9(6):1180-90. PubMed ID: 18255801 [TBL] [Abstract][Full Text] [Related]
5. The recursive deterministic perceptron neural network. Tajine M; Elizondo D Neural Netw; 1998 Dec; 11(9):1571-1588. PubMed ID: 12662729 [TBL] [Abstract][Full Text] [Related]
6. A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Auer P; Burgsteiner H; Maass W Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524 [TBL] [Abstract][Full Text] [Related]
7. A two-layer paradigm capable of forming arbitrary decision regions in input space. Deolalikar V IEEE Trans Neural Netw; 2002; 13(1):15-21. PubMed ID: 18244405 [TBL] [Abstract][Full Text] [Related]
9. Analysis and test of efficient methods for building recursive deterministic perceptron neural networks. Elizondo DA; Birkenhead R; Góngora M; Taillard E; Luyima P Neural Netw; 2007 Dec; 20(10):1095-108. PubMed ID: 17904333 [TBL] [Abstract][Full Text] [Related]
10. A new backpropagation learning algorithm for layered neural networks with nondifferentiable units. Oohori T; Naganuma H; Watanabe K Neural Comput; 2007 May; 19(5):1422-35. PubMed ID: 17381272 [TBL] [Abstract][Full Text] [Related]
11. The layer-wise method and the backpropagation hybrid approach to learning a feedforward neural network. Rubanov NS IEEE Trans Neural Netw; 2000; 11(2):295-305. PubMed ID: 18249761 [TBL] [Abstract][Full Text] [Related]
12. An analytical framework for local feedforward networks. Weaver S; Baird L; Polycarpou M IEEE Trans Neural Netw; 1998; 9(3):473-82. PubMed ID: 18252471 [TBL] [Abstract][Full Text] [Related]
14. Multifeedback-layer neural network. Savran A IEEE Trans Neural Netw; 2007 Mar; 18(2):373-84. PubMed ID: 17385626 [TBL] [Abstract][Full Text] [Related]
15. Learning polynomial feedforward neural networks by genetic programming and backpropagation. Nikolaev NY; Iba H IEEE Trans Neural Netw; 2003; 14(2):337-50. PubMed ID: 18238017 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of convolutional neural networks for visual recognition. Nebauer C IEEE Trans Neural Netw; 1998; 9(4):685-96. PubMed ID: 18252491 [TBL] [Abstract][Full Text] [Related]
17. On the geometric convergence of neural approximations. Lavretsky E IEEE Trans Neural Netw; 2002; 13(2):274-82. PubMed ID: 18244430 [TBL] [Abstract][Full Text] [Related]
18. Derivation of the multilayer perceptron weight constraints for direct network interpretation and knowledge discovery. Vaughn ML Neural Netw; 1999 Nov; 12(9):1259-1271. PubMed ID: 12662631 [TBL] [Abstract][Full Text] [Related]
19. A local linearized least squares algorithm for training feedforward neural networks. Stan O; Kamen E IEEE Trans Neural Netw; 2000; 11(2):487-95. PubMed ID: 18249777 [TBL] [Abstract][Full Text] [Related]
20. Direct parallel perceptrons (DPPs): fast analytical calculation of the parallel perceptrons weights with margin control for classification tasks. Fernandez-Delgado M; Ribeiro J; Cernadas E; Ameneiro SB IEEE Trans Neural Netw; 2011 Nov; 22(11):1837-48. PubMed ID: 21984498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]