These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 18249891)
1. A neural network-based approximation method for discrete-time nonlinear servomechanism problem. Wang D; Huang J IEEE Trans Neural Netw; 2001; 12(3):591-7. PubMed ID: 18249891 [TBL] [Abstract][Full Text] [Related]
2. A neural-network method for the nonlinear servomechanism problem. Chu YC; Huang J IEEE Trans Neural Netw; 1999; 10(6):1412-23. PubMed ID: 18252642 [TBL] [Abstract][Full Text] [Related]
3. Neural-network-based approximate output regulation of discrete-time nonlinear systems. Lan W; Huang J IEEE Trans Neural Netw; 2007 Jul; 18(4):1196-208. PubMed ID: 17668671 [TBL] [Abstract][Full Text] [Related]
4. Bounds of the incremental gain for discrete-time recurrent neural networks. Chu YC IEEE Trans Neural Netw; 2002; 13(5):1087-98. PubMed ID: 18244506 [TBL] [Abstract][Full Text] [Related]
5. Cascade direct adaptive fuzzy control design for a nonlinear two-axis inverted-pendulum servomechanism. Wai RJ; Kuo MA; Lee JD IEEE Trans Syst Man Cybern B Cybern; 2008 Apr; 38(2):439-54. PubMed ID: 18348926 [TBL] [Abstract][Full Text] [Related]
6. Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form. Jagannathan S; He P IEEE Trans Neural Netw; 2008 Dec; 19(12):2073-87. PubMed ID: 19054732 [TBL] [Abstract][Full Text] [Related]
7. Neural networks for feedback feedforward nonlinear control systems. Parisini T; Zoppoli R IEEE Trans Neural Netw; 1994; 5(3):436-49. PubMed ID: 18267810 [TBL] [Abstract][Full Text] [Related]
8. H∞ output tracking control of discrete-time nonlinear systems via standard neural network models. Liu M; Zhang S; Chen H; Sheng W IEEE Trans Neural Netw Learn Syst; 2014 Oct; 25(10):1928-35. PubMed ID: 25291744 [TBL] [Abstract][Full Text] [Related]
9. A rule-based neural controller for inverted pendulum system. Hao J; Vandewalle J; Tan S Int J Neural Syst; 1993 Mar; 4(1):55-64. PubMed ID: 8049790 [TBL] [Abstract][Full Text] [Related]
10. Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof. Al-Tamimi A; Lewis FL; Abu-Khalaf M IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):943-9. PubMed ID: 18632382 [TBL] [Abstract][Full Text] [Related]
11. Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators. Yang Q; Jagannathan S IEEE Trans Syst Man Cybern B Cybern; 2012 Apr; 42(2):377-90. PubMed ID: 21947529 [TBL] [Abstract][Full Text] [Related]
12. Reinforcement-learning-based dual-control methodology for complex nonlinear discrete-time systems with application to spark engine EGR operation. Shih P; Kaul BC; Jagannathan S; Drallmeier JA IEEE Trans Neural Netw; 2008 Aug; 19(8):1369-88. PubMed ID: 18701368 [TBL] [Abstract][Full Text] [Related]
13. Discrete Spectrum Reconstruction Using Integral Approximation Algorithm. Sizikov V; Sidorov D Appl Spectrosc; 2017 Jul; 71(7):1640-1651. PubMed ID: 28664783 [TBL] [Abstract][Full Text] [Related]
14. Neural approximations for infinite-horizon optimal control of nonlinear stochastic systems. Parisini T; Zoppoli R IEEE Trans Neural Netw; 1998; 9(6):1388-408. PubMed ID: 18255818 [TBL] [Abstract][Full Text] [Related]
15. Neural networks for nonlinear and mixed complementarity problems and their applications. Dang C; Leung Y; Gao XB; Chen KZ Neural Netw; 2004 Mar; 17(2):271-83. PubMed ID: 15036344 [TBL] [Abstract][Full Text] [Related]