These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18249919)

  • 1. Learning to trade via direct reinforcement.
    Moody J; Saffell M
    IEEE Trans Neural Netw; 2001; 12(4):875-89. PubMed ID: 18249919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic stock-decision ensemble strategy based on deep reinforcement learning.
    Yu X; Wu W; Liao X; Han Y
    Appl Intell (Dordr); 2023; 53(2):2452-2470. PubMed ID: 35572052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kernel-based least squares policy iteration for reinforcement learning.
    Xu X; Hu D; Lu X
    IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Management of investment portfolios employing reinforcement learning.
    Santos GC; Garruti D; Barboza F; de Souza KG; Domingos JC; Veiga A
    PeerJ Comput Sci; 2023; 9():e1695. PubMed ID: 38192465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational learning techniques for intraday FX trading using popular technical indicators.
    Dempster MH; Payne TW; Romahi Y; Thompson GP
    IEEE Trans Neural Netw; 2001; 12(4):744-54. PubMed ID: 18249910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Financial volatility trading using a self-organising neural-fuzzy semantic network and option straddle-based approach.
    Tung WL; Quek C
    Expert Syst Appl; 2011 May; 38(5):4668-4688. PubMed ID: 32288336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Direct Reinforcement Learning for Financial Signal Representation and Trading.
    Deng Y; Bao F; Kong Y; Ren Z; Dai Q
    IEEE Trans Neural Netw Learn Syst; 2017 Mar; 28(3):653-664. PubMed ID: 26890927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From deterministic to stochastic: an interpretable stochastic model-free reinforcement learning framework for portfolio optimization.
    Song Z; Wang Y; Qian P; Song S; Coenen F; Jiang Z; Su J
    Appl Intell (Dordr); 2023; 53(12):15188-15203. PubMed ID: 36405345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of anemia treatment in hemodialysis patients via reinforcement learning.
    Escandell-Montero P; Chermisi M; Martínez-Martínez JM; Gómez-Sanchis J; Barbieri C; Soria-Olivas E; Mari F; Vila-Francés J; Stopper A; Gatti E; Martín-Guerrero JD
    Artif Intell Med; 2014 Sep; 62(1):47-60. PubMed ID: 25091172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Financial Market Sentiment Prediction Technology and Application Based on Deep Learning Model.
    Guo Y
    Comput Intell Neurosci; 2022; 2022():1988396. PubMed ID: 35281197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-agent reinforcement learning approach for hedging portfolio problem.
    Pham U; Luu Q; Tran H
    Soft comput; 2021; 25(12):7877-7885. PubMed ID: 33897298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LSTM-DDPG for Trading with Variable Positions.
    Jia Z; Gao Q; Peng X
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified analysis of value-function-based reinforcement- learning algorithms.
    Szepesvári C; Littman ML
    Neural Comput; 1999 Nov; 11(8):2017-59. PubMed ID: 10578043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust reinforcement learning.
    Morimoto J; Doya K
    Neural Comput; 2005 Feb; 17(2):335-59. PubMed ID: 15720771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.
    Lewis FL; Vamvoudakis KG
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):14-25. PubMed ID: 20350860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity-driven knowledge distillation for financial trading using Deep Reinforcement Learning.
    Tsantekidis A; Passalis N; Tefas A
    Neural Netw; 2021 Aug; 140():193-202. PubMed ID: 33774425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.
    Tan AH; Lu N; Xiao D
    IEEE Trans Neural Netw; 2008 Feb; 19(2):230-44. PubMed ID: 18269955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.
    Valasek J; Doebbler J; Tandale MD; Meade AJ
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):1014-20. PubMed ID: 18632393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear trading models through Sharpe Ratio maximization.
    Choey M; Weigend AS
    Int J Neural Syst; 1997 Aug; 8(4):417-31. PubMed ID: 9730018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computing platform for pairs-trading online implementation via a blended Kalman-HMM filtering approach.
    Tenyakov A; Mamon R
    J Big Data; 2017; 4(1):46. PubMed ID: 31998599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.