These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 18249965)
1. Sensitivity analysis of multilayer perceptron to input and weight perturbations. Zeng X; Yeung DS IEEE Trans Neural Netw; 2001; 12(6):1358-66. PubMed ID: 18249965 [TBL] [Abstract][Full Text] [Related]
2. A quantified sensitivity measure for multilayer perceptron to input perturbation. Zeng X; Yeung DS Neural Comput; 2003 Jan; 15(1):183-212. PubMed ID: 12590825 [TBL] [Abstract][Full Text] [Related]
3. Using function approximation to analyze the sensitivity of MLP with antisymmetric squashing activation function. Yeung DS; Sun X IEEE Trans Neural Netw; 2002; 13(1):34-44. PubMed ID: 18244407 [TBL] [Abstract][Full Text] [Related]
4. Sensitivity analysis of multilayer perceptron with differentiable activation functions. Choi JY; Choi CH IEEE Trans Neural Netw; 1992; 3(1):101-7. PubMed ID: 18276410 [TBL] [Abstract][Full Text] [Related]
5. Derivation of the multilayer perceptron weight constraints for direct network interpretation and knowledge discovery. Vaughn ML Neural Netw; 1999 Nov; 12(9):1259-1271. PubMed ID: 12662631 [TBL] [Abstract][Full Text] [Related]
6. Universal perceptron and DNA-like learning algorithm for binary neural networks: non-LSBF implementation. Chen F; Chen G; He Q; He G; Xu X IEEE Trans Neural Netw; 2009 Aug; 20(8):1293-301. PubMed ID: 19589746 [TBL] [Abstract][Full Text] [Related]
7. Computing and analyzing the sensitivity of MLP due to the errors of the i.i.d. inputs and weights based on CLT. Yang SS; Ho CL; Siu S IEEE Trans Neural Netw; 2010 Dec; 21(12):1882-91. PubMed ID: 20923730 [TBL] [Abstract][Full Text] [Related]
8. Computation of madalines' sensitivity to input and weight perturbations. Wang Y; Zeng X; Yeung DS; Peng Z Neural Comput; 2006 Nov; 18(11):2854-77. PubMed ID: 16999581 [TBL] [Abstract][Full Text] [Related]
9. An analytical framework for local feedforward networks. Weaver S; Baird L; Polycarpou M IEEE Trans Neural Netw; 1998; 9(3):473-82. PubMed ID: 18252471 [TBL] [Abstract][Full Text] [Related]
10. Sleep snoring detection using multi-layer neural networks. Nguyen TL; Won Y Biomed Mater Eng; 2015; 26 Suppl 1():S1749-55. PubMed ID: 26405943 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity of feedforward neural networks to weight errors. Stevenson M; Winter R; Widrow B IEEE Trans Neural Netw; 1990; 1(1):71-80. PubMed ID: 18282824 [TBL] [Abstract][Full Text] [Related]
12. Conventional modeling of the multilayer perceptron using polynomial basis functions. Chen MS; Manry MT IEEE Trans Neural Netw; 1993; 4(1):164-6. PubMed ID: 18267718 [TBL] [Abstract][Full Text] [Related]
13. Implementation of Analog Perceptron as an Essential Element of Configurable Neural Networks. Geng C; Sun Q; Nakatake S Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751288 [TBL] [Abstract][Full Text] [Related]
14. Identification of nonlinear dynamic systems using functional link artificial neural networks. Patra JC; Pal RN; Chatterji BN; Panda G IEEE Trans Syst Man Cybern B Cybern; 1999; 29(2):254-62. PubMed ID: 18252296 [TBL] [Abstract][Full Text] [Related]
15. Geometrical Interpretation and Design of Multilayer Perceptrons. Lin R; Zhou Z; You S; Rao R; Kuo CJ IEEE Trans Neural Netw Learn Syst; 2024 Feb; 35(2):2545-2559. PubMed ID: 35862331 [TBL] [Abstract][Full Text] [Related]
16. Multilayer perceptrons: approximation order and necessary number of hidden units. Trenn S IEEE Trans Neural Netw; 2008 May; 19(5):836-44. PubMed ID: 18467212 [TBL] [Abstract][Full Text] [Related]
17. Feedforward neural network with adaptive reference pattern layer. Lehtokangas M Int J Neural Syst; 1999 Feb; 9(1):1-9. PubMed ID: 10401926 [TBL] [Abstract][Full Text] [Related]
18. Multilayer perceptron, fuzzy sets, and classification. Pal SK; Mitra S IEEE Trans Neural Netw; 1992; 3(5):683-97. PubMed ID: 18276468 [TBL] [Abstract][Full Text] [Related]
19. Direct explanations for the development and use of a multi-layer perceptron network that classifies low-back-pain patients. Vaughn ML; Cavill SJ; Taylor SJ; Foy MA; Fogg AJ Int J Neural Syst; 2001 Aug; 11(4):335-47. PubMed ID: 11706409 [TBL] [Abstract][Full Text] [Related]
20. Novel maximum-margin training algorithms for supervised neural networks. Ludwig O; Nunes U IEEE Trans Neural Netw; 2010 Jun; 21(6):972-84. PubMed ID: 20409990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]