These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18249995)

  • 1. The modulational method of quartz crystal oscillator frequency stabilization.
    Shmaliy YS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1476-84. PubMed ID: 18249995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultra-compact and low-power oven-controlled crystal oscillator design for precision timing applications.
    Lim J; Kim H; Jackson T; Choi K; Kenny D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):1906-14. PubMed ID: 20875980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The acceleration sensitivity of quartz crystal oscillators: a review.
    Filler RL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):297-305. PubMed ID: 18290155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-controlled narrowband and wide, variable-range four-segment quartz crystal oscillator.
    Ruslan R; Satoh T; Akitsu T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):564-72. PubMed ID: 22481794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A ±0.3 ppm Oven-Controlled MEMS Oscillator Using Structural Resistance-Based Temperature Sensing.
    Liu CS; Tabrizian R; Ayazi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1492-1499. PubMed ID: 29993545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal transient model of a crystal resonator employing thickness-shear vibrations.
    Shmaliy YS; Kurochka OH; Sokolinskiy EG; Rudnev OE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1396-406. PubMed ID: 18244335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expected quality factor of a simple tuned oscillator.
    Tan KH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):886-99. PubMed ID: 21622044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature processing of an ultra stable quartz oscillator.
    Galliou S; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1539-46. PubMed ID: 11800116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low phase-noise sapphire crystal microwave oscillators: current status.
    Ivanov EN; Tobar ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):263-9. PubMed ID: 19251513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward resonator anharmonic sensors for precision crystal oscillators: a Gaussian model.
    Shmaliy YS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):379-89. PubMed ID: 18238554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term frequency aging for unpowered space-class oscillators.
    Bloch M; Ho J; Mancini O; Terracciano L; Mallette LA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2073-8. PubMed ID: 19942495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term performance of precision crystal oscillators in a near-Earth orbital environment.
    Rueger LJ; Norton JR; Lasewicz PT
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):528-31. PubMed ID: 18263216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-resonance quartz crystal oscillator and excitation of a resonator immersed in liquid media.
    Satoh T; Ruslan RI; Gotoh S; Akitsu T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):788-97. PubMed ID: 21507756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New phase-noise model for crystal oscillators: application to the Clapp oscillator.
    Galliou S; Sthal F; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1422-8. PubMed ID: 14682625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive correction method for an OCXO and investigation of analytical cumulative time error upper bound.
    Zhou H; Kunz T; Schwartz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):43-50. PubMed ID: 21244973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A digitally compensated 1.5 GHz CMOS/FBAR frequency reference.
    Rai S; Su Y; Pang W; Ruby R; Otis B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):552-61. PubMed ID: 20211770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless sensing using oscillator circuits locked to remote high-Q SAW resonators.
    Pohl A; Ostermayer G; Seifert F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1161-8. PubMed ID: 18244275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact, single-frequency, doubly resonant optical parametric oscillator pumped in an achromatic phase-adapted double-pass geometry.
    Hardy B; Berrou A; Guilbaud S; Raybaut M; Godard A; Lefebvre M
    Opt Lett; 2011 Mar; 36(5):678-80. PubMed ID: 21368946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is an oscillator-based measurement adequate in a liquid environment?
    Borngräber R; Schröder J; Lucklum R; Hauptmann P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Sep; 49(9):1254-9. PubMed ID: 12243576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct EPR irradiation of a sample using a quartz oscillator operating at 250 MHz for EPR measurements.
    Yokoyama H
    J Magn Reson; 2012 Jan; 214(1):119-23. PubMed ID: 22088663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.