These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18250002)

  • 21. Determination of sensitivity versus frequency characteristics of miniature ultrasonic hydrophones below 1 MHz using planar scanning technique.
    Devaraju V; Lewin PA; Bleeker H
    J Ultrasound Med; 2002 Mar; 21(3):261-8. PubMed ID: 11883536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Angular response of miniature ultrasonic hydrophones.
    Shombert DG; Smith SW; Harris GR
    Med Phys; 1982; 9(4):484-92. PubMed ID: 7110078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Practicalities of Obtaining and Using Hydrophone Calibration Data to Derive Pressure Waveforms.
    Hurrell AM; Rajagopal S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):126-140. PubMed ID: 27479961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitivity of ultrasonic hydrophone probes below 1 MHz.
    Lewin PA; Lypacewicz G; Bautista R; Devaraju V
    Ultrasonics; 2000 Mar; 38(1-8):135-9. PubMed ID: 10829645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrophone measurements in diagnostic ultrasound fields.
    Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):87-101. PubMed ID: 18290135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltage sensitivity response of ultrasonic hydrophones in the frequency range 0.25-2.5 MHz.
    Lewin PA; Bautista R; Devaraju V
    Ultrasound Med Biol; 1999 Sep; 25(7):1131-7. PubMed ID: 10574344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The radiation field characteristics of piezoelectric polymer membrane transducers when operating into air.
    Hayward G; Benny G; Banks R; Galbraith W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1438-47. PubMed ID: 18238690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lamb waves beam deviation due to small inclination of the test structure in air-coupled ultrasonic NDT.
    Kichou HB; Chavez JA; Turo A; Salazar J; Garcia-Hernandez MJ
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1077-82. PubMed ID: 16806365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wide-band piezoelectric polymer acoustic sources.
    Lewin PA; Schafer ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):175-85. PubMed ID: 18290144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz.
    Lewin PA; Mu C; Umchid S; Daryoush A; El-Sherif M
    Ultrasonics; 2005 Dec; 43(10):815-21. PubMed ID: 16054665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-delay spectrometry measurement of magnitude and phase of hydrophone response.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2325-33. PubMed ID: 22083766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A nonlinear propagation model-based phase calibration technique for membrane hydrophones.
    Cooling MP; Humphrey VF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):84-93. PubMed ID: 18334316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wideband spherically focused PVDF acoustic sources for calibration of ultrasound hydrophone probes.
    Selfridge A; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1372-6. PubMed ID: 18238683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling of anomalies due to hydrophones in continuous-wave ultrasound fields.
    Huttunen T; Kaipio JP; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1486-500. PubMed ID: 14682632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the Importance of Consistent Insonation Conditions During Hydrophone Calibration and Use.
    Rajagopal S; Robinson SP; Ablitt J; Miloro P; Wang L; Zeqiri B; Hurrell A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; 70(2):120-127. PubMed ID: 36094977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasonic needle hydrophone calibration in air by a parabolic off-axis mirror focused beam using three-transducer reciprocity.
    Svilainis L; Chaziachmetovas A; Kaskonas P; Gomez Alvarez-Arenas TE
    Ultrasonics; 2023 Aug; 133():107025. PubMed ID: 37159982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A pvdf membrane hydrophone for operation in the range 0.5 Mhz to 15 Mhz.
    Shotton KC; Bacon DR; Quilliam RM
    Ultrasonics; 1980 May; 18(3):123-6. PubMed ID: 7376282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calibration of hydrophones based on reciprocity and time delay spectrometry.
    Ludwig G; Brendel K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):168-74. PubMed ID: 18290143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Noise analysis in air-coupled PVDF ultrasonic sensors.
    Fiorillo AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1432-7. PubMed ID: 18238689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite element modelling of dense and porous piezoceramic disc hydrophones.
    Ramesh R; Kara H; Bowen CR
    Ultrasonics; 2005 Jan; 43(3):173-81. PubMed ID: 15556652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.