These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 18250002)

  • 41. A multiple-frequency hydrophone calibration technique.
    Smith RA; Bacon DR
    J Acoust Soc Am; 1990 May; 87(5):2231-43. PubMed ID: 2189922
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional hybrid model for predicting air-coupled generation of guided waves in composite material plates.
    Masmoudi M; Castaings M
    Ultrasonics; 2012 Jan; 52(1):81-92. PubMed ID: 21782203
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of ultrasonic transducers using a fiberoptic sensor.
    Wu YQ; Shankar PM; Lewin PA
    Ultrasound Med Biol; 1994; 20(7):645-53. PubMed ID: 7810025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrasonic material characterization using large-aperture PVDF receivers.
    Adamowski JC; Buiochi F; Higuti RT
    Ultrasonics; 2010 Feb; 50(2):110-5. PubMed ID: 19853269
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A 200-kHz ultrasonic transducer coupled to the air with a radiating membrane.
    Babic M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):252-5. PubMed ID: 18267582
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Curved PVDF airborne transducer.
    Wang H; Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1375-86. PubMed ID: 18244333
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Are hydrophones of diameter 0.5 mm small enough to characterise diagnostic ultrasound equipment?
    Smith RA
    Phys Med Biol; 1989 Nov; 34(11):1593-607. PubMed ID: 2685834
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection.
    Beard PC; Perennes F; Mills TN
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1575-82. PubMed ID: 18244356
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calibration of medical ultrasonic equipment-procedures and accuracy assessment.
    Preston RC; Bacon DR; Smith RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):110-21. PubMed ID: 18290137
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cellular polypropylene polymer foam as air-coupled ultrasonic transducer materials.
    Satyanarayan L; Haberman MR; Berthelot YH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2343-55. PubMed ID: 20889422
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ScAlN Thick-Film Ultrasonic Transducer in 40-80 MHz.
    Sano KH; Karasawa R; Yanagitani T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2097-2102. PubMed ID: 30418872
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Excitation of acoustic waves from cylindrical polyvinylidene fluoride (PVDF) film confined in a concentric wall.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1653-9. PubMed ID: 18986955
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The impact of piezoelectric PVDF on medical ultrasound exposure measurements, standards, and regulations.
    Harris GR; Preston RC; Dereggi AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1321-35. PubMed ID: 18238678
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of disposable membrane hydrophones for a frequency range from 1MHz to 10MHz.
    Lee JW; Ohm WS; Kim YT
    Ultrasonics; 2017 Nov; 81():50-58. PubMed ID: 28578220
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chromatic aberration of an air-coupled ultrasonic Fresnel zone-plate.
    Schindel DW; Bashford AG; Hutchins DA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):242-6. PubMed ID: 18238420
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generation and reception of ultrasonic guided waves in composite plates using conformable piezoelectric transmitters and optical-fiber detectors.
    Gachagan A; Hayward G; McNab A; Reynolds P; Pierce SG; Philp WR; Culshaw B
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):72-81. PubMed ID: 18238400
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of a novel solid-state method for determining the acoustic power generated by physiotherapy ultrasound transducers.
    Zeqiri B; Barrie J
    Ultrasound Med Biol; 2008 Sep; 34(9):1513-27. PubMed ID: 18440695
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measurements of the longitudinal wave speed in thin materials using a wideband PVDF transducer.
    Kim KY; Zou W; Holland S; Sachse W
    J Acoust Soc Am; 2003 Sep; 114(3):1450-3. PubMed ID: 14514197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.