BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1825002)

  • 1. Sponge allograft effector cells exert suppressor function via an L-arginine-dependent mechanism.
    Langrehr JM; Hoffman RA; Lee KW; Billiar TR; Schraut WH; Simmons RL
    Transplant Proc; 1991 Feb; 23(1 Pt 1):839-40. PubMed ID: 1825002
    [No Abstract]   [Full Text] [Related]  

  • 2. Nitric oxide production regulates alloactivation in rat splenocyte mixed lymphocyte cultures.
    Langrehr JM; Hoffman RA; Billiar TR; Lee KW; Schraut WH; Simmons RL
    Transplant Proc; 1991 Feb; 23(1 Pt 1):183-4. PubMed ID: 1990509
    [No Abstract]   [Full Text] [Related]  

  • 3. Nitric oxide synthesis in the in vivo allograft response: a possible regulatory mechanism.
    Langrehr JM; Hoffman RA; Billiar TR; Lee KK; Schraut WH; Simmons RL
    Surgery; 1991 Aug; 110(2):335-42. PubMed ID: 1858041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide suppresses IFN-gamma production in the spleen of mercuric chloride-exposed brown Norway rats.
    van der Meide PH; de Labie MC; Botman CA; Aten J; Weening JJ
    Cell Immunol; 1995 Apr; 161(2):195-206. PubMed ID: 7697730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rat splenocytes inhibit antigen-specific lymphocyte proliferation through a reactive nitrogen intermediate (RNI)-dependent mechanism and exhibit increased RNI production in response to IFN-gamma.
    Stein CS; Strejan GH
    Cell Immunol; 1993 Sep; 150(2):281-97. PubMed ID: 8370073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that nitric oxide production by in vivo allosensitized cells inhibits the development of allospecific CTL.
    Langrehr JM; Dull KE; Ochoa JB; Billiar TR; Ildstad ST; Schraut WH; Simmons RL; Hoffman RA
    Transplantation; 1992 Mar; 53(3):632-40. PubMed ID: 1372453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-cell mitogenic responses in fully xenogeneic chimeras (WF rat----B10 mouse) are restored by blocking the L-arginine-dependent nitric oxide pathway.
    Wren SM; Hoffman RA; Billiar TR; Abou el Ezz A; Hronakes ML; Ildstad ST
    Transplant Proc; 1992 Apr; 24(2):499-500. PubMed ID: 1566404
    [No Abstract]   [Full Text] [Related]  

  • 8. FK 506 inhibits nitric oxide production by cells infiltrating sponge matrix allografts.
    Langrehr JM; Müller AR; Markus PM; Simmons RL; Hoffman RA
    Transplant Proc; 1991 Dec; 23(6):3260-1. PubMed ID: 1721430
    [No Abstract]   [Full Text] [Related]  

  • 9. Infectious tolerance mediated by CD8+ T-suppresor cells after UV-B-irradiated donor-specific transfusion and rat heart transplantation.
    Witkowski P; Liu JW; Jin MX; Liu Z; Suciu-Foca N; Hardy MA
    Transplant Proc; 2005; 37(1):43-5. PubMed ID: 15808541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolongation of cardiac allograft survival by suppressor T cells (Ts) generated in vitro using cyclosporine.
    Lenrow DA; Markmann JF; Shachner MS; Naji A
    Transplant Proc; 1989 Feb; 21(1 Pt 1):473-4. PubMed ID: 2523144
    [No Abstract]   [Full Text] [Related]  

  • 11. Induction of suppressor T cells in vitro by an autologous alloreactive T cell line propagated from a DSBT-enhanced rat renal allograft.
    Ruiz P; Baldwin WM; Sanfilippo F
    Transplant Proc; 1989 Apr; 21(2):3289-91. PubMed ID: 2565616
    [No Abstract]   [Full Text] [Related]  

  • 12. Nitric oxide-induced anti-mitogenic effects in high and low responder rat strains.
    Fu Y; Blankenhorn EP
    J Immunol; 1992 Apr; 148(7):2217-22. PubMed ID: 1545127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundant production of nitric oxide from murine macrophages by direct stimulation of tumor cells.
    Isobe K; Nakashima I
    Biochem Biophys Res Commun; 1993 Apr; 192(2):499-504. PubMed ID: 8484761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism.
    Green SJ; Meltzer MS; Hibbs JB; Nacy CA
    J Immunol; 1990 Jan; 144(1):278-83. PubMed ID: 2104889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of nitric oxide on chondrocytes and lymphocytes.
    Kondo S; Ishiguro N; Iwata H; Nakashima I; Isobe K
    Biochem Biophys Res Commun; 1993 Dec; 197(3):1431-7. PubMed ID: 8280161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of nitric oxide in bone marrow-derived natural suppressor activity. Its dependence on IFN-gamma.
    Angulo I; Rodríguez R; García B; Medina M; Navarro J; Subiza JL
    J Immunol; 1995 Jul; 155(1):15-26. PubMed ID: 7541413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spleen mixed leukocyte chimerism and induction of tolerance in rat renal allograft recipients conditioned with donor-specific blood transfusions and cyclosporine.
    Llull R; Mañez R; Domenech N; Starzl TE; Black KS; Hewitt CW
    Transplant Proc; 1995 Aug; 27(4):2374-6. PubMed ID: 7652844
    [No Abstract]   [Full Text] [Related]  

  • 18. Transfusion-induced T suppressor cell activity and experimental tumor growth.
    Lenhard V; Scholler P; Zeller W
    Transplant Proc; 1989 Feb; 21(1 Pt 1):580-3. PubMed ID: 2523151
    [No Abstract]   [Full Text] [Related]  

  • 19. Blood transfusion plus allograft--but not blood transfusion alone--induce IL 2-producing suppressor cells in Lew-1A recipients of LEW-1W heart allograft.
    Chevalier S; Lacroix H; Moreau JF; Soulillou JP
    Transplant Proc; 1987 Feb; 19(1 Pt 1):544-6. PubMed ID: 2978922
    [No Abstract]   [Full Text] [Related]  

  • 20. CD4-positive suppressor cells block allotransplant rejection.
    Yin D; Fathman CG
    J Immunol; 1995 Jun; 154(12):6339-45. PubMed ID: 7759872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.