BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 18250154)

  • 81. Biologic significance of GATA-1 activities in Ras-mediated megakaryocytic differentiation of hematopoietic cell lines.
    Matsumura I; Kawasaki A; Tanaka H; Sonoyama J; Ezoe S; Minegishi N; Nakajima K; Yamamoto M; Kanakura Y
    Blood; 2000 Oct; 96(7):2440-50. PubMed ID: 11001896
    [TBL] [Abstract][Full Text] [Related]  

  • 82. GATA-1- and FOG-dependent activation of megakaryocytic alpha IIB gene expression.
    Gaines P; Geiger JN; Knudsen G; Seshasayee D; Wojchowski DM
    J Biol Chem; 2000 Nov; 275(44):34114-21. PubMed ID: 10926935
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The Gata1 5' region harbors distinct cis-regulatory modules that direct gene activation in erythroid cells and gene inactivation in HSCs.
    Takai J; Moriguchi T; Suzuki M; Yu L; Ohneda K; Yamamoto M
    Blood; 2013 Nov; 122(20):3450-60. PubMed ID: 24021675
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Establishing a hematopoietic genetic network through locus-specific integration of chromatin regulators.
    DeVilbiss AW; Boyer ME; Bresnick EH
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):E3398-407. PubMed ID: 23959865
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1.
    Stachura DL; Chou ST; Weiss MJ
    Blood; 2006 Jan; 107(1):87-97. PubMed ID: 16144799
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Consequences of GATA-1 deficiency in megakaryocytes and platelets.
    Vyas P; Ault K; Jackson CW; Orkin SH; Shivdasani RA
    Blood; 1999 May; 93(9):2867-75. PubMed ID: 10216081
    [TBL] [Abstract][Full Text] [Related]  

  • 87. FOG-2, a heart- and brain-enriched cofactor for GATA transcription factors.
    Lu JR; McKinsey TA; Xu H; Wang DZ; Richardson JA; Olson EN
    Mol Cell Biol; 1999 Jun; 19(6):4495-502. PubMed ID: 10330188
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Ets-dependent regulation of target gene expression during megakaryopoiesis.
    Jackers P; Szalai G; Moussa O; Watson DK
    J Biol Chem; 2004 Dec; 279(50):52183-90. PubMed ID: 15466856
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The N-terminal zinc finger of the erythroid transcription factor GATA-1 binds GATC motifs in DNA.
    Newton A; Mackay J; Crossley M
    J Biol Chem; 2001 Sep; 276(38):35794-801. PubMed ID: 11445591
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1.
    Nichols KE; Crispino JD; Poncz M; White JG; Orkin SH; Maris JM; Weiss MJ
    Nat Genet; 2000 Mar; 24(3):266-70. PubMed ID: 10700180
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1.
    Pevny L; Simon MC; Robertson E; Klein WH; Tsai SF; D'Agati V; Orkin SH; Costantini F
    Nature; 1991 Jan; 349(6306):257-60. PubMed ID: 1987478
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis.
    Wang F; Zhu Y; Guo L; Dong L; Liu H; Yin H; Zhang Z; Li Y; Liu C; Ma Y; Song W; He A; Wang Q; Wang L; Zhang J; Li J; Yu J
    Nucleic Acids Res; 2014 Jan; 42(1):442-57. PubMed ID: 24049083
    [TBL] [Abstract][Full Text] [Related]  

  • 93. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis.
    Shimizu R; Takahashi S; Ohneda K; Engel JD; Yamamoto M
    EMBO J; 2001 Sep; 20(18):5250-60. PubMed ID: 11566888
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo.
    Yu C; Cantor AB; Yang H; Browne C; Wells RA; Fujiwara Y; Orkin SH
    J Exp Med; 2002 Jun; 195(11):1387-95. PubMed ID: 12045237
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Differential effects of GATA-1 on proliferation and differentiation of erythroid lineage cells.
    Zheng J; Kitajima K; Sakai E; Kimura T; Minegishi N; Yamamoto M; Nakano T
    Blood; 2006 Jan; 107(2):520-7. PubMed ID: 16174764
    [TBL] [Abstract][Full Text] [Related]  

  • 96. MLLT3 regulates early human erythroid and megakaryocytic cell fate.
    Pina C; May G; Soneji S; Hong D; Enver T
    Cell Stem Cell; 2008 Mar; 2(3):264-73. PubMed ID: 18371451
    [TBL] [Abstract][Full Text] [Related]  

  • 97. FOG-2: A novel GATA-family cofactor related to multitype zinc-finger proteins Friend of GATA-1 and U-shaped.
    Tevosian SG; Deconinck AE; Cantor AB; Rieff HI; Fujiwara Y; Corfas G; Orkin SH
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):950-5. PubMed ID: 9927674
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Furin gene (fur) regulation in differentiating human megakaryoblastic Dami cells: involvement of the proximal GATA recognition motif in the P1 promoter and impact on the maturation of furin substrates.
    Laprise MH; Grondin F; Cayer P; McDonald PP; Dubois CM
    Blood; 2002 Nov; 100(10):3578-87. PubMed ID: 12411321
    [TBL] [Abstract][Full Text] [Related]  

  • 99. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding.
    Zhang P; Zhang X; Iwama A; Yu C; Smith KA; Mueller BU; Narravula S; Torbett BE; Orkin SH; Tenen DG
    Blood; 2000 Oct; 96(8):2641-8. PubMed ID: 11023493
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Transforming acidic coiled-coil protein 3 (TACC3) controls friend of GATA-1 (FOG-1) subcellular localization and regulates the association between GATA-1 and FOG-1 during hematopoiesis.
    Garriga-Canut M; Orkin SH
    J Biol Chem; 2004 May; 279(22):23597-605. PubMed ID: 15037632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.