These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 18250157)
1. Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription. Sabò A; Lusic M; Cereseto A; Giacca M Mol Cell Biol; 2008 Apr; 28(7):2201-12. PubMed ID: 18250157 [TBL] [Abstract][Full Text] [Related]
2. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes. Dow EC; Liu H; Rice AP J Cell Physiol; 2010 Jul; 224(1):84-93. PubMed ID: 20201073 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). Chiu YL; Cao H; Jacque JM; Stevenson M; Rana TM J Virol; 2004 Mar; 78(5):2517-29. PubMed ID: 14963154 [TBL] [Abstract][Full Text] [Related]
4. Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate. Ramanathan Y; Reza SM; Young TM; Mathews MB; Pe'ery T J Virol; 1999 Jul; 73(7):5448-58. PubMed ID: 10364292 [TBL] [Abstract][Full Text] [Related]
5. Regulation of P-TEFb elongation complex activity by CDK9 acetylation. Fu J; Yoon HG; Qin J; Wong J Mol Cell Biol; 2007 Jul; 27(13):4641-51. PubMed ID: 17452463 [TBL] [Abstract][Full Text] [Related]
6. CYCLINg through transcription: posttranslational modifications of P-TEFb regulate transcription elongation. Cho S; Schroeder S; Ott M Cell Cycle; 2010 May; 9(9):1697-705. PubMed ID: 20436276 [TBL] [Abstract][Full Text] [Related]
7. Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription. Zhou M; Deng L; Lacoste V; Park HU; Pumfery A; Kashanchi F; Brady JN; Kumar A J Virol; 2004 Dec; 78(24):13522-33. PubMed ID: 15564463 [TBL] [Abstract][Full Text] [Related]
8. Short Communication: The Broad-Spectrum Histone Deacetylase Inhibitors Vorinostat and Panobinostat Activate Latent HIV in CD4(+) T Cells In Part Through Phosphorylation of the T-Loop of the CDK9 Subunit of P-TEFb. Jamaluddin MS; Hu PW; Jan Y; Siwak EB; Rice AP AIDS Res Hum Retroviruses; 2016 Feb; 32(2):169-73. PubMed ID: 26727990 [TBL] [Abstract][Full Text] [Related]
9. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. Paparidis NF; Durvale MC; Canduri F Mol Biosyst; 2017 Jan; 13(2):246-276. PubMed ID: 27833949 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4(+) T lymphocytes. Mbonye UR; Gokulrangan G; Datt M; Dobrowolski C; Cooper M; Chance MR; Karn J PLoS Pathog; 2013; 9(5):e1003338. PubMed ID: 23658523 [TBL] [Abstract][Full Text] [Related]
11. Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation. Mbonye U; Wang B; Gokulrangan G; Shi W; Yang S; Karn J J Biol Chem; 2018 Jun; 293(26):10009-10025. PubMed ID: 29743242 [TBL] [Abstract][Full Text] [Related]
12. Polo-like kinase 1 inhibits the activity of positive transcription elongation factor of RNA Pol II b (P-TEFb). Jiang L; Huang Y; Deng M; Liu T; Lai W; Ye X PLoS One; 2013; 8(8):e72289. PubMed ID: 23977272 [TBL] [Abstract][Full Text] [Related]
13. Acetylation of cyclin T1 regulates the equilibrium between active and inactive P-TEFb in cells. Cho S; Schroeder S; Kaehlcke K; Kwon HS; Pedal A; Herker E; Schnoelzer M; Ott M EMBO J; 2009 May; 28(10):1407-17. PubMed ID: 19387490 [TBL] [Abstract][Full Text] [Related]
14. The CDK9/cyclin T1 subunits of P-TEFb in mouse oocytes and preimplantation embryos: a possible role in embryonic genome activation. Oqani RK; Kim HR; Diao YF; Park CS; Jin DI BMC Dev Biol; 2011 Jun; 11():33. PubMed ID: 21639898 [TBL] [Abstract][Full Text] [Related]
15. Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. O'Keeffe B; Fong Y; Chen D; Zhou S; Zhou Q J Biol Chem; 2000 Jan; 275(1):279-87. PubMed ID: 10617616 [TBL] [Abstract][Full Text] [Related]
16. Bromodomain protein Brd4 regulates human immunodeficiency virus transcription through phosphorylation of CDK9 at threonine 29. Zhou M; Huang K; Jung KJ; Cho WK; Klase Z; Kashanchi F; Pise-Masison CA; Brady JN J Virol; 2009 Jan; 83(2):1036-44. PubMed ID: 18971272 [TBL] [Abstract][Full Text] [Related]
17. Cellular control of gene expression by T-type cyclin/CDK9 complexes. Garriga J; Graña X Gene; 2004 Aug; 337():15-23. PubMed ID: 15276198 [TBL] [Abstract][Full Text] [Related]
18. A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast. Sansó M; Lee KM; Viladevall L; Jacques PÉ; Pagé V; Nagy S; Racine A; St Amour CV; Zhang C; Shokat KM; Schwer B; Robert F; Fisher RP; Tanny JC PLoS Genet; 2012; 8(8):e1002822. PubMed ID: 22876190 [TBL] [Abstract][Full Text] [Related]
19. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). Qi T; Tang W; Wang L; Zhai L; Guo L; Zeng X J Biol Chem; 2011 Apr; 286(17):15171-81. PubMed ID: 21378166 [TBL] [Abstract][Full Text] [Related]
20. Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-phosphorylated) Rpb1 carboxyl-terminal domain substrate recognition. St Amour CV; Sansó M; Bösken CA; Lee KM; Larochelle S; Zhang C; Shokat KM; Geyer M; Fisher RP Mol Cell Biol; 2012 Jul; 32(13):2372-83. PubMed ID: 22508988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]