These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18250659)

  • 1. Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media.
    Walker SA; Fantini S; Gratton E
    Appl Opt; 1997 Jan; 36(1):170-4. PubMed ID: 18250659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method.
    Yao Y; Wang Y; Pei Y; Zhu W; Barbour RL
    J Opt Soc Am A Opt Image Sci Vis; 1997 Jan; 14(1):325-42. PubMed ID: 8988624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis.
    Xu M; Alrubaiee M; Gayen SK; Alfano RR
    Appl Opt; 2005 Apr; 44(10):1889-97. PubMed ID: 15818863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved topographic reconstruction of turbid media in the spatial frequency domain including the determination of the reduced scattering and absorption coefficients.
    Geiger S; Hank P; Kienle A
    J Opt Soc Am A Opt Image Sci Vis; 2023 Feb; 40(2):294-304. PubMed ID: 36821199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection.
    Pogue B; Testorf M; McBride T; Osterberg U; Paulsen K
    Opt Express; 1997 Dec; 1(13):391-403. PubMed ID: 19377563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media.
    Wang L; Zhao X
    Appl Opt; 1997 Oct; 36(28):7277-82. PubMed ID: 18264237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-precision frequency-domain measurements of the optical properties of turbid media.
    Gerken M; Faris GW
    Opt Lett; 1999 Jul; 24(14):930-2. PubMed ID: 18073899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interference of diffusive light waves.
    Schmitt JM; Knüttel A; Knutson JR
    J Opt Soc Am A; 1992 Oct; 9(10):1832-43. PubMed ID: 1403242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective source term in the diffusion equation for photon transport in turbid media.
    Fantini S; Franceschini MA; Gratton E
    Appl Opt; 1997 Jan; 36(1):156-63. PubMed ID: 18250657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of heterogeneities embedded within a turbid slab media using time- and frequency-domain methods: application to the mammography.
    Piron V; L'Huillier JP
    Lasers Med Sci; 2006 Jul; 21(2):67-73. PubMed ID: 16596457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability.
    Jiang H; Paulsen KD; Osterberg UL; Patterson MS
    Appl Opt; 1997 Jan; 36(1):52-63. PubMed ID: 18250647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction.
    Köstli KP; Frenz M; Weber HP; Paltauf G; Schmidt-Kloiber H
    Appl Opt; 2001 Aug; 40(22):3800-9. PubMed ID: 18360414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data.
    Jiang H; Paulsen KD; Osterberg UL; Pogue BW; Patterson MS
    Opt Lett; 1995 Oct; 20(20):2128-30. PubMed ID: 19862273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of optical coefficients in turbid media using time-resolved reflectance and calibration-free instrument response functions.
    Helton M; Mycek MA; Vishwanath K
    Biomed Opt Express; 2022 Mar; 13(3):1595-1608. PubMed ID: 35414997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct reconstruction of single-photon emission computed tomography images using retained matrix elements.
    Pratt JP; Lear JL
    J Digit Imaging; 1997 Feb; 10(1):10-3. PubMed ID: 9147522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.
    Matenine D; Mascolo-Fortin J; Goussard Y; Després P
    Med Phys; 2015 Nov; 42(11):6376-86. PubMed ID: 26520729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy.
    Madsen SJ; Anderson ER; Haskell RC; Tromberg BJ
    Opt Lett; 1994 Dec; 19(23):1934-6. PubMed ID: 19855700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media.
    Paithankar DY; Chen AU; Pogue BW; Patterson MS; Sevick-Muraca EM
    Appl Opt; 1997 Apr; 36(10):2260-72. PubMed ID: 18253202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.