These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18250717)

  • 1. Observation of spectral broadening caused by self-phase modulation in highly multimode optical fiber.
    Feldman SF; Staver PR; Lotshaw WT
    Appl Opt; 1997 Jan; 36(3):617-21. PubMed ID: 18250717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers.
    Johnson MR; Codd PJ; Hill WM; Boettcher T
    Lasers Surg Med; 2015 Dec; 47(10):839-51. PubMed ID: 26415136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-peak-power, single-frequency, single-mode, linearly polarized, nanosecond all-fiber laser based on self-phase modulation compensation.
    Su R; Zhou P; Ma P; Lü H; Xu X
    Appl Opt; 2013 Oct; 52(30):7331-5. PubMed ID: 24216587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial beam self-cleaning and supercontinuum generation with Yb-doped multimode graded-index fiber taper based on accelerating self-imaging and dissipative landscape.
    Niang A; Mansuryan T; Krupa K; Tonello A; Fabert M; Leproux P; Modotto D; Egorova ON; Levchenko AE; Lipatov DS; Semjonov SL; Millot G; Couderc V; Wabnitz S
    Opt Express; 2019 Aug; 27(17):24018-24028. PubMed ID: 31510297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: dependence of the laser-intensity profile on beam propagation.
    Richou B; Schertz I; Gobin I; Richou J
    Appl Opt; 1997 Mar; 36(7):1610-4. PubMed ID: 18250843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers.
    Zhu X; Schülzgen A; Li H; Li L; Han L; Moloney JV; Peyghambarian N
    Opt Express; 2008 Oct; 16(21):16632-45. PubMed ID: 18852772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core.
    Helmchen F; Tank DW; Denk W
    Appl Opt; 2002 May; 41(15):2930-4. PubMed ID: 12027181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear beam self-cleaning in a coupled cavity composite laser based on multimode fiber.
    Guenard R; Krupa K; Dupiol R; Fabert M; Bendahmane A; Kermene V; Desfarges-Berthelemot A; Auguste JL; Tonello A; Barthélémy A; Millot G; Wabnitz S; Couderc V
    Opt Express; 2017 Sep; 25(19):22219-22227. PubMed ID: 29041536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Q-switched laser in an SMS cavity for inhibiting nonlinear effects.
    Zhou J; Lu Y; He B; Gu X
    Appl Opt; 2015 Jul; 54(19):6080-4. PubMed ID: 26193155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-phase modulation in multimode optical fibers produced by moderately high-powered picosecond pulses.
    Wang QZ; Ji D; Yang L; Ho PP; Alfano RR
    Opt Lett; 1989 Jun; 14(11):578-80. PubMed ID: 19752902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly flexible fiber delivery of a high peak power nanosecond Nd:YAG laser beam for flexiscopic applications.
    Abbasi H; Canbaz F; Guzman R; Cattin PC; Zam A
    Biomed Opt Express; 2021 Jan; 12(1):444-461. PubMed ID: 33659082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2 μm.
    Geng J; Wang Q; Jiang Z; Luo T; Jiang S; Czarnecki G
    Opt Lett; 2011 Jun; 36(12):2293-5. PubMed ID: 21685997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bundled hollow optical fibers for transmission of high-peak-power Q-switched Nd:YAG laser pulses.
    Yilmaz O; Miyagi M; Matsuura Y
    Appl Opt; 2006 Sep; 45(27):7174-8. PubMed ID: 16946798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber.
    Osterberg U; Margulis W
    Opt Lett; 1986 Aug; 11(8):516-8. PubMed ID: 19738674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiber-optic delivery of high-peak-power Q-switched laser pulses for in-cylinder flow measurement.
    Stephens TJ; Haste MJ; Towers DP; Thomson MJ; Taghizadeh MR; Jones JD; Hand DP
    Appl Opt; 2003 Jul; 42(21):4307-14. PubMed ID: 12921278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 microm.
    El-Sherif AF; King TA
    Opt Lett; 2003 Jan; 28(1):22-4. PubMed ID: 12656523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-mode Raman fiber laser based on a multimode fiber.
    Baek SH; Roh WB
    Opt Lett; 2004 Jan; 29(2):153-5. PubMed ID: 14743995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Crystal Laser-Heated Pedestal-Growth Sapphire Fibers for Er:YAG Laser Power Delivery.
    Nubling RK; Harrington JA
    Appl Opt; 1998 Jul; 37(21):4777-81. PubMed ID: 18285935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband (0.6-1.8-microm) subnanosecond pulse emission using an ultra-low-loss single-mode fiber.
    Kitayama K; Kato Y; Seikai S; Tateda M
    Appl Opt; 1981 Jul; 20(14):2428-32. PubMed ID: 20332972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Third-harmonic and three-wave sum-frequency light generation in an elliptical-core optical fiber.
    Gabriagues JM
    Opt Lett; 1983 Mar; 8(3):183-5. PubMed ID: 19714178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.