These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 18250790)

  • 1. Explicit finite-difference simulation of optical integrated devices on massive parallel computers.
    Sterkenburgh T; Michels RM; Dress P; Franke H
    Appl Opt; 1997 Feb; 36(6):1191-7. PubMed ID: 18250790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical simulation of cholesteric liquid crystal displays using the finite-difference time-domain method.
    Ting CL; Lin TH; Liao CC; Fuh AY
    Opt Express; 2006 Jun; 14(12):5594-606. PubMed ID: 19516728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-difference time-domain simulation of spacetime cloak.
    Cornelius J; Liu J; Brio M
    Opt Express; 2014 May; 22(10):12087-95. PubMed ID: 24921328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-explicit simulation of wave interaction in optical waveguide crossings at large angles.
    Chu ST; Chaudhuri SK; Lit JW
    Appl Opt; 1991 Apr; 30(12):1464-70. PubMed ID: 20700306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-order unstructured-mesh approach for computational electromagnetics in the time domain.
    El Hachemi M; Hassan O; Morgan K; Rowse D; Weatherill N
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):445-69. PubMed ID: 15306503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-opals interaction modeling by direct numerical solution of Maxwell's equations.
    Vaccari A; Lesina AC; Cristoforetti L; Chiappini A; Crema L; Calliari L; Ramunno L; Berini P; Ferrari M
    Opt Express; 2014 Nov; 22(22):27739-49. PubMed ID: 25401918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The HIE-FDTD Method for Simulating Dispersion Media Represented by Drude, Debye, and Lorentz Models.
    Chen J; Mou C
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional simulation of optical coherence tomography images.
    Brenner T; Munro PRT; Krüger B; Kienle A
    Sci Rep; 2019 Aug; 9(1):12189. PubMed ID: 31434928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating-direction-implicit finite-difference time-domain method.
    Singh G; Tan EL; Chen ZN
    Opt Lett; 2011 Apr; 36(8):1494-6. PubMed ID: 21499401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate analysis of planar optical waveguide devices using higher-order FDTD scheme.
    Kong F; Li K; Liu X
    Opt Express; 2006 Nov; 14(24):11796-803. PubMed ID: 19529602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method.
    Yamaguchi T; Hinata T
    Opt Express; 2007 Sep; 15(18):11481-91. PubMed ID: 19547505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the sub-diffraction focusing phenomenon of light propagation through scattering medium.
    Tseng SH
    Methods; 2018 Mar; 136():75-80. PubMed ID: 29127044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The analytical vectorial structure of a nonparaxial Gaussian beam close to the source.
    Zhou G
    Opt Express; 2008 Mar; 16(6):3504-14. PubMed ID: 18542443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional efficient dispersive alternating-direction-implicit finite-difference time-domain algorithm using a quadratic complex rational function.
    Kim EK; Ha SG; Lee J; Park YB; Jung KY
    Opt Express; 2015 Jan; 23(2):873-81. PubMed ID: 25835847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications.
    Han K; Chang CH
    Nanomaterials (Basel); 2014 Jan; 4(1):87-128. PubMed ID: 28348287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic simulation of electromechanical systems: from Maxwell's theory to common-rail diesel injection.
    Kurz S; Becker U; Maisch H
    Naturwissenschaften; 2001 May; 88(5):183-92. PubMed ID: 11482431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplified total internal reflection: theory, analysis, and demonstration of existence via FDTD.
    Willis KJ; Schneider JB; Hagness SC
    Opt Express; 2008 Feb; 16(3):1903-14. PubMed ID: 18542269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling bending losses of optical nanofibers or nanowires.
    Yu H; Wang S; Fu J; Qiu M; Li Y; Gu F; Tong L
    Appl Opt; 2009 Aug; 48(22):4365-9. PubMed ID: 19649039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution of the inhomogeneous Maxwell's equations using a Born series.
    Krüger B; Brenner T; Kienle A
    Opt Express; 2017 Oct; 25(21):25165-25182. PubMed ID: 29041187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.