These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18250811)

  • 1. Phase maps based on the Lorenz-Mie theory to optimize phase Doppler particle-sizing systems.
    Jiang Z
    Appl Opt; 1997 Feb; 36(6):1367-75. PubMed ID: 18250811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unidirectional phase-Doppler method for particle-size measurements.
    Yokoi N; Aizu Y; Mishina H
    Appl Opt; 2001 Mar; 40(7):1049-64. PubMed ID: 18357089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical particle sizing in backscatter.
    Damaschke N; Nobach H; Semidetnov N; Tropea C
    Appl Opt; 2002 Sep; 41(27):5713-27. PubMed ID: 12269572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination.
    Han Y; Gréhan G; Gouesbet G
    Appl Opt; 2003 Nov; 42(33):6621-9. PubMed ID: 14658463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid.
    Xu F; Ren K; Gouesbet G; Gréhan G; Cai X
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):119-31. PubMed ID: 17164850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monotonic relationships between scattered powers and diameters in Lorenz-Mie theory for simultaneous velocimetry and sizing of single particles.
    Grehan G; Gouesbet G; Rabasse C
    Appl Opt; 1981 Mar; 20(5):796-9. PubMed ID: 20309206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical analysis of the effects of particle trajectory and structural resonances on the performance of a phase-Doppler particle analyzer.
    Schaub SA; Alexander DR; Barton JP
    Appl Opt; 1994 Jan; 33(3):473-83. PubMed ID: 20862039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique).
    Charalampous G; Hardalupas Y
    Appl Opt; 2011 Mar; 50(9):1197-209. PubMed ID: 21460991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forward scattering of a Gaussian beam by a nonabsorbing sphere.
    Hodges JT; Gréhan G; Gouesbet G; Presser C
    Appl Opt; 1995 Apr; 34(12):2120-32. PubMed ID: 21037758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method of phase-Doppler anemometry free from the measurement-volume effect.
    Qiu H; Hsu CT
    Appl Opt; 1999 May; 38(13):2737-42. PubMed ID: 18319847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of diffraction theory and generalized Lorenz-Mie theory for a sphere located on the axis of a laser beam.
    Chevaillier JP; Fabre J; Gréhan G; Gouesbet G
    Appl Opt; 1990 Mar; 29(9):1293-8. PubMed ID: 20562995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle.
    Xu F; Ren KF; Cai X
    Appl Opt; 2006 Jul; 45(20):4990-9. PubMed ID: 16807610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sizing of submicrometer particles using a phase-Doppler system.
    Naqwi A; Durst F; Kraft G
    Appl Opt; 1991 Nov; 30(33):4903-13. PubMed ID: 20717296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sizing fine particles with the phase Doppler interferometric technique.
    Sankar SV; Weber BJ; Kamemoto DY; Bachalo WD
    Appl Opt; 1991 Nov; 30(33):4914-20. PubMed ID: 20717297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Far-field Lorenz-Mie scattering in an absorbing host medium. II: Improved stability of the numerical algorithm.
    Mishchenko MI; Dlugach JM; Lock JA; Yurkin MA
    J Quant Spectrosc Radiat Transf; 2018 Sep; 217():274-277. PubMed ID: 30344341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimum deviation of spatial frequency in large-particle sizing.
    Qiu H; Hsu CT
    Appl Opt; 1998 Oct; 37(28):6787-94. PubMed ID: 18301494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of host medium absorption on polarized radiative transfer in dispersed media.
    Wang CC; Ma LX
    Appl Opt; 2019 Sep; 58(26):7157-7164. PubMed ID: 31503989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical particle sizing for in situ measurements Part 1.
    Holve D; Self SA
    Appl Opt; 1979 May; 18(10):1632-45. PubMed ID: 20212904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle sizing by means of the forward scattering lobe.
    Hodkinson JR
    Appl Opt; 1966 May; 5(5):839-44. PubMed ID: 20048958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method to reduce errors of droplet sizing based on the ratio of fluorescent and scattered light intensities (laser-induced fluorescence/Mie technique).
    Charalampous G; Hardalupas Y
    Appl Opt; 2011 Jul; 50(20):3622-37. PubMed ID: 21743575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.