These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 18250848)

  • 1. Infrared emittance of medium containing nonsphere-shaped particles.
    Xu W; Shen SC
    Appl Opt; 1997 Mar; 36(7):1644-9. PubMed ID: 18250848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral reflectance and emittance of particulate materials. 1: theory.
    Emslie AG; Aronson JR
    Appl Opt; 1973 Nov; 12(11):2563-72. PubMed ID: 20125831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emittance of a radar absorber coated with an infrared layer in the 3~5microm window.
    Liu L; Gong R; Cheng Y; Zhang F; He H; Huang D
    Opt Express; 2005 Dec; 13(25):10382-91. PubMed ID: 19503253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of emittance of a coating layer with the Kubelka-Munk theory and the Mie-scattering model.
    Liu L; Gong R; Huang D; Nie Y; Liu C
    J Opt Soc Am A Opt Image Sci Vis; 2005 Nov; 22(11):2424-9. PubMed ID: 16302393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared emittance of fibrous materials.
    Aronson JR; Emslie AG; Ruccia FE; Smallman CR; Smith EM; Strong PF
    Appl Opt; 1979 Aug; 18(15):2622-33. PubMed ID: 20212721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared radiation and reflection in an inhomogeneous coating layer on a substrate.
    Xu W; Shen SC
    Appl Opt; 1992 Aug; 31(22):4488-96. PubMed ID: 20725446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VO
    Xie B; Dong J; Zhao J; Liu L; Fu X; Zhai Z
    Appl Opt; 2022 Dec; 61(35):10538-10547. PubMed ID: 36607116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.
    Wagner R; Benz S; Möhler O; Saathoff H; Schnaiter M; Leisner T
    J Phys Chem A; 2007 Dec; 111(50):13003-22. PubMed ID: 18004822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ray scattering model for spherical transparent particles.
    Simonot L; Hébert M; Hersch RD; Garay H
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jul; 25(7):1521-34. PubMed ID: 18594607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices.
    Bhandari A; Hamre B; Frette Ø; Stamnes K; Stamnes JJ
    Opt Express; 2011 Jul; 19(15):14549-67. PubMed ID: 21934819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral emittance and reflectance of powders.
    Aronson JR; Emslie AG; Rooney TP; Coleman I; Horlick G
    Appl Opt; 1969 Aug; 8(8):1639-43. PubMed ID: 20072490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower and upper bounds on extinction cross sections of arbitrarily shaped strongly absorbing or strongly reflecting nonspherical particles.
    Chýlek P; Ramaswamy V
    Appl Opt; 1982 Dec; 21(23):4339-44. PubMed ID: 20401067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light scattering and absorption by randomly-oriented cylinders: dependence on aspect ratio for refractive indices applicable for marine particles.
    Gordon HR
    Opt Express; 2011 Feb; 19(5):4673-91. PubMed ID: 21369299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light scattering by a coated infinite cylinder in an absorbing medium.
    Lee SC
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1067-75. PubMed ID: 21643392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations.
    Chyýlek P; Srivastava V; Pinnick RG; Wang RT
    Appl Opt; 1988 Jun; 27(12):2396-404. PubMed ID: 20531771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices.
    Sun W; Fu Q
    Appl Opt; 2000 Oct; 39(30):5569-78. PubMed ID: 18354554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of electromagnetic theory and various approximations for computing the absorption efficiency and single-scattering albedo of hexagonal columns.
    Baran AJ; Havemann S
    Appl Opt; 2000 Oct; 39(30):5560-8. PubMed ID: 18354553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facility for assessing spectral normal emittance of solid materials at high temperature.
    Mercatelli L; Meucci M; Sani E
    Appl Opt; 2015 Oct; 54(29):8700-5. PubMed ID: 26479806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of sustained release matrix pellets by melt agglomeration in the fluidized bed: influence of formulation variables and modelling of agglomerate growth.
    Pauli-Bruns A; Knop K; Lippold BC
    Eur J Pharm Biopharm; 2010 Mar; 74(3):503-12. PubMed ID: 20026401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.