These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 18250895)

  • 1. Basic requirements for a metal-binding site in a protein: the influence of loop shortening on the cupredoxin azurin.
    Li C; Yanagisawa S; Martins BM; Messerschmidt A; Banfield MJ; Dennison C
    Proc Natl Acad Sci U S A; 2006 May; 103(19):7258-63. PubMed ID: 16651527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expressed protein ligation for metalloprotein design and engineering.
    Clark KM; van der Donk WA; Lu Y
    Methods Enzymol; 2009; 462():97-115. PubMed ID: 19632471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer reactivity of type zero Pseudomonas aeruginosa azurin.
    Lancaster KM; Farver O; Wherland S; Crane EJ; Richards JH; Pecht I; Gray HB
    J Am Chem Soc; 2011 Apr; 133(13):4865-73. PubMed ID: 21405124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible S-nitrosylation in an engineered azurin.
    Tian S; Liu J; Cowley RE; Hosseinzadeh P; Marshall NM; Yu Y; Robinson H; Nilges MJ; Blackburn NJ; Solomon EI; Lu Y
    Nat Chem; 2016 Jul; 8(7):670-7. PubMed ID: 27325093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clarifying the Copper Coordination Environment in a de Novo Designed Red Copper Protein.
    Koebke KJ; Ruckthong L; Meagher JL; Mathieu E; Harland J; Deb A; Lehnert N; Policar C; Tard C; Penner-Hahn JE; Stuckey JA; Pecoraro VL
    Inorg Chem; 2018 Oct; 57(19):12291-12302. PubMed ID: 30226758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics.
    Hosseinzadeh P; Lu Y
    Biochim Biophys Acta; 2016 May; 1857(5):557-581. PubMed ID: 26301482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 1.4 A resolution structure of Paracoccus pantotrophus pseudoazurin.
    Najmudin S; Pauleta SR; Moura I; Romão MJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Jun; 66(Pt 6):627-35. PubMed ID: 20516588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating metal-binding in proteins by nuclear magnetic resonance.
    Jensen MR; Hass MA; Hansen DF; Led JJ
    Cell Mol Life Sci; 2007 May; 64(9):1085-104. PubMed ID: 17396226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion.
    Caldwell SJ; Haydon IC; Piperidou N; Huang PS; Bick MJ; Sjöström HS; Hilvert D; Baker D; Zeymer C
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30362-30369. PubMed ID: 33203677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inner- and outer-sphere metal coordination in blue copper proteins.
    Warren JJ; Lancaster KM; Richards JH; Gray HB
    J Inorg Biochem; 2012 Oct; 115():119-26. PubMed ID: 22658756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron flow through metalloproteins.
    Winkler JR; Gray HB
    Chem Rev; 2014 Apr; 114(7):3369-80. PubMed ID: 24279515
    [No Abstract]   [Full Text] [Related]  

  • 12. Beyond the coupled distortion model: structural analysis of the single domain cupredoxin AcoP, a green mononuclear copper centre with original features.
    Roger M; Leone P; Blackburn NJ; Horrell S; Chicano TM; Biaso F; Giudici-Orticoni MT; Abriata LA; Hura GL; Hough MA; Sciara G; Ilbert M
    Dalton Trans; 2024 Jan; 53(4):1794-1808. PubMed ID: 38170898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orchestrating copper binding: structure and variations on the cupredoxin fold.
    Guo J; Fisher OS
    J Biol Inorg Chem; 2022 Sep; 27(6):529-540. PubMed ID: 35994119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis.
    Espinoza-Cara A; Zitare U; Alvarez-Paggi D; Klinke S; Otero LH; Murgida DH; Vila AJ
    Chem Sci; 2018 Aug; 9(32):6692-6702. PubMed ID: 30310603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics and unfolding pathway of chimeric azurin variants: insights from molecular dynamics simulation.
    Evoli S; Guzzi R; Rizzuti B
    J Biol Inorg Chem; 2013 Oct; 18(7):739-49. PubMed ID: 23838900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proline 96 of the copper ligand loop of amicyanin regulates electron transfer from methylamine dehydrogenase by positioning other residues at the protein-protein interface.
    Choi M; Sukumar N; Mathews FS; Liu A; Davidson VL
    Biochemistry; 2011 Feb; 50(7):1265-73. PubMed ID: 21268585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of auracyanin A at 1.85 A resolution: the structures and functions of auracyanins A and B, two almost identical "blue" copper proteins, in the photosynthetic bacterium Chloroflexus aurantiacus.
    Lee M; del Rosario MC; Harris HH; Blankenship RE; Guss JM; Freeman HC
    J Biol Inorg Chem; 2009 Mar; 14(3):329-45. PubMed ID: 19190939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ligand-containing loops at copper sites in proteins.
    Dennison C
    Nat Prod Rep; 2008 Feb; 25(1):15-24. PubMed ID: 18250895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loop-contraction mutagenesis of type 1 copper sites.
    Yanagisawa S; Dennison C
    J Am Chem Soc; 2004 Dec; 126(48):15711-9. PubMed ID: 15571393
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.