BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 18251563)

  • 1. Chiral functionalization of optically inactive monolayer-protected silver nanoclusters by chiral ligand-exchange reactions.
    Nishida N; Yao H; Kimura K
    Langmuir; 2008 Mar; 24(6):2759-66. PubMed ID: 18251563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines.
    Yao H; Miki K; Nishida N; Sasaki A; Kimura K
    J Am Chem Soc; 2005 Nov; 127(44):15536-43. PubMed ID: 16262418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergence of large chiroptical responses by ligand exchange cross-linking of monolayer-protected gold clusters with chiral dithiol.
    Yao H; Yaomura S
    Langmuir; 2013 May; 29(21):6444-51. PubMed ID: 23635318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates.
    Goldsmith MR; George CB; Zuber G; Naaman R; Waldeck DH; Wipf P; Beratan DN
    Phys Chem Chem Phys; 2006 Jan; 8(1):63-7. PubMed ID: 16482245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral monolayer-protected Au-Pd bimetallic nanoclusters: effect of palladium doping on their chiroptical responses.
    Yao H; Kobayashi R
    J Colloid Interface Sci; 2014 Apr; 419():1-8. PubMed ID: 24491322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral 38-gold-atom nanoclusters: synthesis and chiroptical properties.
    Xu Q; Kumar S; Jin S; Qian H; Zhu M; Jin R
    Small; 2014 Mar; 10(5):1008-14. PubMed ID: 24155016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical transformation of chiral monolayer-protected gold clusters: observation of ligand size effects on optical and chiroptical responses.
    Yao H; Kitaoka N; Sasaki A
    Nanoscale; 2012 Feb; 4(3):955-63. PubMed ID: 22222550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral gold nanoparticles.
    Gautier C; Bürgi T
    Chemphyschem; 2009 Feb; 10(3):483-92. PubMed ID: 19142928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular assembly facilitating adsorbate-induced chiral electronic states in a metal surface.
    Bovet N; McMillan N; Gadegaard N; Kadodwala M
    J Phys Chem B; 2007 Aug; 111(33):10005-11. PubMed ID: 17661515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postsynthesis racemization and place exchange reactions. Another step to unravel the origin of chirality for chiral ligand-capped gold nanoparticles.
    Qi H; Hegmann T
    J Am Chem Soc; 2008 Oct; 130(43):14201-6. PubMed ID: 18826312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the chiral counterion, solvent, and ligand used to induce a chiroptical response from Au25(-) nanoclusters.
    Cao T; Jin S; Wang S; Zhang D; Meng X; Zhu M
    Nanoscale; 2013 Aug; 5(16):7589-95. PubMed ID: 23842657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral inversion of gold nanoparticles.
    Gautier C; Bürgi T
    J Am Chem Soc; 2008 Jun; 130(22):7077-84. PubMed ID: 18459786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structurally Precise Silver Sulfide Nanoclusters Protected by Rhodium(III) Octahedra with Aminothiolates.
    Ueda M; Goo ZL; Minami K; Yoshinari N; Konno T
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14673-14678. PubMed ID: 31397055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand exchange reactions on thiolate-protected gold nanoclusters.
    Wang Y; Bürgi T
    Nanoscale Adv; 2021 Apr; 3(10):2710-2727. PubMed ID: 34046556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral thiol-stabilized silver nanoclusters with well-resolved optical transitions synthesized by a facile etching procedure in aqueous solutions.
    Cathcart N; Mistry P; Makra C; Pietrobon B; Coombs N; Jelokhani-Niaraki M; Kitaev V
    Langmuir; 2009 May; 25(10):5840-6. PubMed ID: 19358597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric transformation of achiral gold nanoclusters with negative nonlinear dependence between chiroptical activity and enantiomeric excess.
    Liu C; Zhao Y; Zhang TS; Tao CB; Fei W; Zhang S; Li MB
    Nat Commun; 2023 Jun; 14(1):3730. PubMed ID: 37349326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structurally Well-Defined Sigmoidal Gold Clusters: Probing the Correlation between Metal Atom Arrangement and Chiroptical Response.
    He X; Wang Y; Jiang H; Zhao L
    J Am Chem Soc; 2016 May; 138(17):5634-43. PubMed ID: 27070415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chirality in gold nanoclusters probed by NMR spectroscopy.
    Qian H; Zhu M; Gayathri C; Gil RR; Jin R
    ACS Nano; 2011 Nov; 5(11):8935-42. PubMed ID: 21981416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical self-assembly of silver nanocluster arrays on triblock copolymer templates.
    Shi Z; Han M; Song F; Zhou J; Wan J; Wang G
    J Phys Chem B; 2006 Sep; 110(37):18154-7. PubMed ID: 16970431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance.
    Ha JM; Solovyov A; Katz A
    Langmuir; 2009 Jan; 25(1):153-8. PubMed ID: 19072069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.