BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 18251903)

  • 1. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.
    Weger HG; Walker CN; Fink MB
    Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma membrane ferric reductase activity of iron-limited algal cells is inhibited by ferric chelators.
    Sonier MB; Weger HG
    Biometals; 2010 Dec; 23(6):1029-42. PubMed ID: 20508972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of citrinin on iron-redox cycle.
    Da Lozzo EJ; Mangrich AS; Rocha ME; de Oliveira MB; Carnieri EG
    Cell Biochem Funct; 2002 Mar; 20(1):19-29. PubMed ID: 11835267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of iron-regulated cellular proteins, Fe3+-reducing and -chelating compounds, in the white-rot fungus Perenniporia medulla-panis.
    Arantes V; Milagres AM
    Can J Microbiol; 2007 Dec; 53(12):1323-9. PubMed ID: 18059565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli.
    Miethke M; Hou J; Marahiel MA
    Biochemistry; 2011 Dec; 50(50):10951-64. PubMed ID: 22098718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of ferric complexes with NADH-cytochrome b5 reductase and cytochrome b5: lipid peroxidation, H2O2 generation, and ferric reduction.
    Yang MX; Cederbaum AI
    Arch Biochem Biophys; 1996 Jul; 331(1):69-78. PubMed ID: 8660685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfite oxidation by iron-grown cells of Thiobacillus ferrooxidans at pH 3 possibly involves free radicals, iron, and cytochrome oxidase.
    Harahuc L; Suzuki I
    Can J Microbiol; 2001 May; 47(5):424-30. PubMed ID: 11400733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans.
    Chen Y; Suzuki I
    Can J Microbiol; 2005 Aug; 51(8):695-703. PubMed ID: 16234867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro.
    Wyman S; Simpson RJ; McKie AT; Sharp PA
    FEBS Lett; 2008 Jun; 582(13):1901-6. PubMed ID: 18498772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots.
    Zaharieva TB; Abadía J
    Protoplasma; 2003 Jun; 221(3-4):269-75. PubMed ID: 12802634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction.
    Takeda K; Iizuka M; Watanabe T; Nakagawa J; Kawasaki S; Niimura Y
    FEBS J; 2007 Mar; 274(5):1318-27. PubMed ID: 17298443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation into copper catalyzed D-penicillamine oxidation and subsequent hydrogen peroxide generation.
    Gupte A; Mumper RJ
    J Inorg Biochem; 2007 Apr; 101(4):594-602. PubMed ID: 17275091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron acquisition by Cryptococcus neoformans.
    Vartivarian SE; Cowart RE; Anaissie EJ; Tashiro T; Sprigg HA
    J Med Vet Mycol; 1995; 33(3):151-6. PubMed ID: 7666294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of changes in iron redox state on the activity of enzymes sensitive to modification of SH groups.
    Korge P; Campbell KB
    Arch Biochem Biophys; 1993 Aug; 304(2):420-8. PubMed ID: 8346918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of uncouplers on endogenous respiration and ferrous iron oxidation in a chemolithoautotrophic bacterium Acidithiobacillus (Thiobacillus) ferrooxidans.
    Chen Y; Suzuki I
    FEMS Microbiol Lett; 2004 Aug; 237(1):139-45. PubMed ID: 15268949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.
    Pullakhandam R; Nair MK; Kasula S; Kilari S; Thippande TG
    Biochem Biophys Res Commun; 2008 Sep; 374(2):369-72. PubMed ID: 18638448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron chelators for clinical use.
    Tilbrook GS; Hider RC
    Met Ions Biol Syst; 1998; 35():691-730. PubMed ID: 9444773
    [No Abstract]   [Full Text] [Related]  

  • 19. [Assimilatory ferric reductases in enterococci].
    Lisiecki P; Mikucki J
    Med Dosw Mikrobiol; 2005; 57(4):359-68. PubMed ID: 16773829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.
    Jeeves RE; Mason RP; Woodacre A; Cashmore AM
    Yeast; 2011 Sep; 28(9):629-44. PubMed ID: 21823165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.