These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 18252282)

  • 1. The superposition strategy for arm trajectory modification in robotic manipulators.
    Gat-Falik T; Flash T
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(1):83-95. PubMed ID: 18252282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural network learning of robot arm impedance in operational space.
    Tsuji T; Ito K; Morasso PG
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(2):290-8. PubMed ID: 18263030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel and distributed trajectory generation of redundant manipulators through cooperation and competition among subsystems.
    Tsuji T; Nakayama S; Ito K
    IEEE Trans Syst Man Cybern B Cybern; 1997; 27(3):498-509. PubMed ID: 18255888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-point impedance control for redundant manipulators.
    Tsuji T; Jazidie A; Kaneko M
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(5):707-18. PubMed ID: 18263070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superposition and modulation of muscle synergies for reaching in response to a change in target location.
    d'Avella A; Portone A; Lacquaniti F
    J Neurophysiol; 2011 Dec; 106(6):2796-812. PubMed ID: 21880939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separate adaptive mechanisms for controlling trajectory and final position in reaching.
    Scheidt RA; Ghez C
    J Neurophysiol; 2007 Dec; 98(6):3600-13. PubMed ID: 17913996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arm trajectory modifications during reaching towards visual targets.
    Flash T; Henis E
    J Cogn Neurosci; 1991; 3(3):220-30. PubMed ID: 23964837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of position and path repeatability on force at the knee during six-DOF joint motion.
    Darcy SP; Gil JE; Woo SL; Debski RE
    Med Eng Phys; 2009 Jun; 31(5):553-7. PubMed ID: 19129002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A recurrent neural network for minimum infinity-norm kinematic control of redundant manipulators with an improved problem formulation and reduced architecture complexity.
    Tang WS; Wang J
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(1):98-105. PubMed ID: 18244770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion planning and coordination for robot systems based on representation space.
    Su J; Xie W
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):248-59. PubMed ID: 20624700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic analysis and fault-tolerant trajectory planning of space manipulator under a single joint failure.
    Mu Z; Han L; Xu W; Li B; Liang B
    Robotics Biomim; 2016; 3(1):16. PubMed ID: 27766193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task based synthesis of serial manipulators.
    Patel S; Sobh T
    J Adv Res; 2015 May; 6(3):479-92. PubMed ID: 26257946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Optimal Asymmetric S-Curve Trajectory Planning of Redundant Manipulators under Kinematic Constraints.
    Liu T; Cui J; Li Y; Gao S; Zhu M; Chen L
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different learned coordinate frames for planning trajectories and final positions in reaching.
    Ghez C; Scheidt R; Heijink H
    J Neurophysiol; 2007 Dec; 98(6):3614-26. PubMed ID: 17804576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operational space trajectory tracking control of robot manipulators endowed with a primary controller of synthetic joint velocity.
    Moreno-Valenzuela J; González-Hernández L
    ISA Trans; 2011 Jan; 50(1):131-40. PubMed ID: 20800835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results.
    Su H; Hu Y; Karimi HR; Knoll A; Ferrigno G; De Momi E
    Neural Netw; 2020 Nov; 131():291-299. PubMed ID: 32841835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic invariants during cyclical arm movements.
    Dounskaia N
    Biol Cybern; 2007 Feb; 96(2):147-63. PubMed ID: 17031664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of Trajectory Modifications in Target-Directed Reaching.
    Flanagan JR; Ostry DJ; Feldman AG
    J Mot Behav; 1993 Sep; 25(3):140-152. PubMed ID: 12581985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-joint coupling and joint angle synergies of human catching movements.
    Bockemühl T; Troje NF; Dürr V
    Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trajectory Planning for Coal Gangue Sorting Robot Tracking Fast-Mass Target under Multiple Constraints.
    Wang P; Ma H; Zhang Y; Cao X; Wu X; Wei X; Zhou W
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.