These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 18252290)

  • 1. Learning sensor-based navigation of a real mobile robot in unknown worlds.
    Araujo R; de Almeida AT
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(2):164-78. PubMed ID: 18252290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time map building and navigation for autonomous robots in unknown environments.
    Oriolo G; Ulivi G; Vendittelli M
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(3):316-33. PubMed ID: 18255950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments.
    Araújo R
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1235-49. PubMed ID: 17001984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive navigation in dynamic environment using a multisensor predictor.
    Song KT; Chang CC
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):870-80. PubMed ID: 18252364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid, safe, and incremental learning of navigation strategies.
    Millan JR
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(3):408-20. PubMed ID: 18263043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance.
    Ye C; Yung NC; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2003; 33(1):17-27. PubMed ID: 18238153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary programming-based univector field navigation method for past mobile robots.
    Kim YJ; Kim JH; Kwon DS
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(3):450-8. PubMed ID: 18244811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation.
    Almasri M; Elleithy K; Alajlan A
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26712766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation.
    Omrane H; Masmoudi MS; Masmoudi M
    Comput Intell Neurosci; 2016; 2016():9548482. PubMed ID: 27688748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based learning for mobile robot navigation from the dynamical systems perspective.
    Tani J
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(3):421-36. PubMed ID: 18263044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation.
    Yang X; Moallem M; Patel RV
    IEEE Trans Syst Man Cybern B Cybern; 2005 Dec; 35(6):1214-24. PubMed ID: 16366247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing maps for mobile robot navigation based on ultrasonic range data.
    Kurz A
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(2):233-42. PubMed ID: 18263026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary Fuzzy Control and Navigation for Two Wheeled Robots Cooperatively Carrying an Object in Unknown Environments.
    Juang CF; Lai MG; Zeng WT
    IEEE Trans Cybern; 2015 Sep; 45(9):1731-43. PubMed ID: 25398185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.
    Nam TH; Shim JH; Cho YI
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of homing navigation in a real mobile robot.
    Floreano D; Mondada F
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(3):396-407. PubMed ID: 18263042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Hybrid Model for Obstacle Detection and Avoidance in Robot Operating System Framework (Rapidly Exploring Random Tree and Dynamic Windows Approach).
    Adiuku N; Avdelidis NP; Tang G; Plastropoulos A
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuzzy integral-based gaze control architecture incorporated with modified-univector field-based navigation for humanoid robots.
    Yoo JK; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):125-39. PubMed ID: 21878418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neuro-fuzzy controller for mobile robot navigation and multirobot convoying.
    Ng KC; Trivedi MM
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(6):829-40. PubMed ID: 18256001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusion of the SLAM with Wi-Fi-Based Positioning Methods for Mobile Robot-Based Learning Data Collection, Localization, and Tracking in Indoor Spaces.
    Lee G; Moon BC; Lee S; Han D
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.